Selective control of inhibitory synapse development by Slitrk3-PTPδ trans-synaptic interaction


Balanced development of excitatory and inhibitory synapses is required for normal brain function, and an imbalance in this development may underlie the pathogenesis of many neuropsychiatric disorders. Compared with the many identified trans-synaptic adhesion complexes that organize excitatory synapses, little is known about the organizers that are specific for inhibitory synapses. We found that Slit and NTRK-like family member 3 (Slitrk3) actS as a postsynaptic adhesion molecule that selectively regulates inhibitory synapse development via trans-interaction with axonal tyrosine phosphatase receptor PTPδ. When expressed in fibroblasts, Slitrk3 triggered only inhibitory presynaptic differentiation in contacting axons of co-cultured rat hippocampal neurons. Recombinant Slitrk3 preferentially localized to inhibitory postsynaptic sites. Slitrk3-deficient mice exhibited decreases in inhibitory, but not excitatory, synapse number and function in hippocampal CA1 neurons and exhibited increased seizure susceptibility and spontaneous epileptiform activity. Slitrk3 required trans-interaction with axonal PTPδ to induce inhibitory presynaptic differentiation. These results identify Slitrk3-PTPδ as an inhibitory-specific trans-synaptic organizing complex that is required for normal functional GABAergic synapse development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Slitrk3 selectively induces functional inhibitory presynaptic differentiation in co-culture.
Figure 2: Recombinant Slitrk3 localizes to inhibitory postsynaptic sites.
Figure 3: Slitrk3 knockdown decreases the density of inhibitory synapses in hippocampal culture.
Figure 4: Slitrk3−/− mice have reduced inhibitory synapse density in CA1 region of hippocampus.
Figure 5: Slitrk3−/− mice have reduced inhibitory synaptic transmission in CA1 of the hippocampus.
Figure 6: Slitrk3−/− mice exhibit increased seizure susceptibility and abnormal epileptiform activities in EEG recording.
Figure 7: PTPδ is a presynaptic binding partner for Slitrk3.
Figure 8: Slitrk3 requires PTPδ for induction of inhibitory presynaptic differentiation.


  1. 1

    Huang, Z.J., Di Cristo, G. & Ango, F. Development of GABA innervation in the cerebral and cerebellar cortices. Nat. Rev. Neurosci. 8, 673–686 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Akerman, C.J. & Cline, H.T. Refining the roles of GABAergic signaling during neural circuit formation. Trends Neurosci. 30, 382–389 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Hensch, T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Maffei, A., Nelson, S.B. & Turrigiano, G.G. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat. Neurosci. 7, 1353–1359 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Cline, H. Synaptogenesis: a balancing act between excitation and inhibition. Curr. Biol. 15, R203–R205 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Rubenstein, J.L. & Merzenich, M.M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Wassef, A., Baker, J. & Kochan, L.D. GABA and schizophrenia: a review of basic science and clinical studies. J. Clin. Psychopharmacol. 23, 601–640 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Singer, H.S. & Minzer, K. Neurobiology of Tourette's syndrome: concepts of neuroanatomic localization and neurochemical abnormalities. Brain Dev. 25 (suppl. 1), S70–S84 (2003).

    Article  Google Scholar 

  9. 9

    Möhler, H. GABAA receptors in central nervous system disease: anxiety, epilepsy and insomnia. J. Recept. Signal Transduct. Res. 26, 731–740 (2006).

    Article  Google Scholar 

  10. 10

    Siddiqui, T.J. & Craig, A.M. Synaptic organizing complexes. Curr. Opin. Neurobiol. 21, 132–143 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Dalva, M.B., McClelland, A.C. & Kayser, M.S. Cell adhesion molecules: signaling functions at the synapse. Nat. Rev. Neurosci. 8, 206–220 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Shen, K. & Scheiffele, P. Genetics and cell biology of building specific synaptic connectivity. Annu. Rev. Neurosci. 33, 473–507 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W. & Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Ichtchenko, K. et al. Neuroligin 1: a splice site–specific ligand for beta-neurexins. Cell 81, 435–443 (1995).

    CAS  Article  Google Scholar 

  16. 16

    de Wit, J. et al. LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64, 799–806 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Ko, J., Fuccillo, M.V., Malenka, R.C. & Sudhof, T.C. LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64, 791–798 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Linhoff, M.W. et al. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron 61, 734–749 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Siddiqui, T.J., Pancaroglu, R., Kang, Y., Rooyakkers, A. & Craig, A.M. LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J. Neurosci. 30, 7495–7506 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Woo, J. et al. Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat. Neurosci. 12, 428–437 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Takahashi, H. et al. Postsynaptic TrkC and presynaptic PTPsigma function as a bidirectional excitatory synaptic organizing complex. Neuron 69, 287–303 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Varoqueaux, F., Jamain, S. & Brose, N. Neuroligin 2 is exclusively localized to inhibitory synapses. Eur. J. Cell Biol. 83, 449–456 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Blundell, J. et al. Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav. 8, 114–126 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Gibson, J.R., Huber, K.M. & Sudhof, T.C. Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J. Neurosci. 29, 13883–13897 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Poulopoulos, A. et al. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63, 628–642 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Aruga, J. & Mikoshiba, K. Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol. Cell. Neurosci. 24, 117–129 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Abelson, J.F. et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310, 317–320 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Zuchner, S. et al. SLITRK1 mutations in trichotillomania. Mol. Psychiatry 11, 887–889 (2006).

    Article  Google Scholar 

  29. 29

    Piton, A. et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol. Psychiatry 16, 867–880 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Smith, E.N. et al. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol. Psychiatry 14, 755–763 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Katayama, K. et al. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities. Mol. Psychiatry 15, 177–184 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Shmelkov, S.V. et al. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat. Med. 16, 598–602 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Benson, D.L., Watkins, F.H., Steward, O. & Banker, G. Characterization of GABAergic neurons in hippocampal cell cultures. J. Neurocytol. 23, 279–295 (1994).

    CAS  Article  Google Scholar 

  34. 34

    Dunah, A.W. et al. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat. Neurosci. 8, 458–467 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Kwon, S.K., Woo, J., Kim, S.Y., Kim, H. & Kim, E. Trans-synaptic adhesions between netrin G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase δ (PTPδ), and PTPσ via specific domains regulate excitatory synapse formation. J. Biol. Chem. 285, 13966–13978 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Chih, B., Engelman, H. & Scheiffele, P. Control of excitatory and inhibitory synapse formation by neuroligins. Science 307, 1324–1328 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Jedlicka, P. et al. Increased dentate gyrus excitability in neuroligin-2–deficient mice in vivo. Cereb. Cortex 21, 357–367 (2011).

    Article  Google Scholar 

  38. 38

    Terauchi, A. et al. Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature 465, 783–787 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Yoshida, T. et al. IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ. J. Neurosci. 31, 13485–13499 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Valnegri, P. et al. The X-linked intellectual disability protein IL1RAPL1 regulates excitatory synapse formation by binding PTPδ and RhoGAP2. Hum. Mol. Genet. 20, 4797–4809 (2011).

    CAS  Article  Google Scholar 

  41. 41

    Südhof, T.C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    Article  Google Scholar 

  42. 42

    Beaubien, F. & Cloutier, J.F. Differential expression of Slitrk family members in the mouse nervous system. Dev. Dyn. 238, 3285–3296 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Uetani, N. et al. Impaired learning with enhanced hippocampal long-term potentiation in PTPδ-deficient mice. EMBO J. 19, 2775–2785 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Betancur, C., Sakurai, T. & Buxbaum, J.D. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci. 32, 402–412 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Schormair, B. et al. PTPRD (protein tyrosine phosphatase receptor type δ) is associated with restless legs syndrome. Nat. Genet. 40, 946–948 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Elia, J. et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol. Psychiatry 15, 637–646 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    CAS  Article  Google Scholar 

  48. 48

    Talebizadeh, Z., Butler, M.G. & Theodoro, M.F. Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res. 1, 240–250 (2008).

    Article  Google Scholar 

  49. 49

    Yasuda, H., Barth, A.L., Stellwagen, D. & Malenka, R.C. A developmental switch in the signaling cascades for LTP induction. Nat. Neurosci. 6, 15–16 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Suzuki, T. et al. Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility. Hum. Mol. Genet. 18, 1099–1109 (2009).

    CAS  Article  Google Scholar 

Download references


We thank X. Zhou (Brain Research Centre, University of British Columbia) for excellent preparation of neuron cultures, N. Takashima (Lab for Behavioral and Developmental Disorders, RIKEN BSI) for technical assistance with seizure experiments and C. Nishioka (Research Resource Center, RIKEN BSI) for help generating Slitrk3 knockout mice. This work was supported by a NeuroDevNet Canadian Network of Centre of Excellence Opportunities Initiative Award, US National Institutes of Health grant MH070860, Canadian Institutes of Health Research grant MOP-84241and Canada Research Chair awards to A.M.C., a Japan Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad and a National Alliance for Research on Schizophrenia and Depression (Brain and Behavior Research Fund) Young Investigator grant to H.T., and RIKEN BSI funds and a Ministry of Education, Culture, Sports, Science (Japan) Grant-in-Aid for Scientific Research (A) (21240031) to J.A.

Author information




H.T. performed all of the experiments involving co-culture, neuron culture localization, RNAi knockdown and protein binding assays. K.K. and J.A. performed the mouse gene targeting. K.S. and H.Y. performed the electrophysiological experiments and analysis. H.M. performed the EEG experiments. M.O., T.P. and H.T. performed the mouse immunofluorescence analysis. Y.M. performed the mouse western blot analysis. A.M.C., J.A. and T.T. supervised the project. H.T. and A.M.C. conceived the project and prepared the manuscript with critical input from J.A.

Corresponding authors

Correspondence to Jun Aruga or Ann Marie Craig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 1669 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takahashi, H., Katayama, K., Sohya, K. et al. Selective control of inhibitory synapse development by Slitrk3-PTPδ trans-synaptic interaction. Nat Neurosci 15, 389–398 (2012).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing