Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas

Abstract

Therapeutically engineered stem cells have shown promise for glioblastoma multiforme (GBM) therapy; however, key preclinical studies are urgently needed for their clinical translation. In this study, we investigated a new approach to GBM treatment using therapeutic stem cells encapsulated in biodegradable, synthetic extracellular matrix (sECM) in mouse models of human GBM resection. Using multimodal imaging, we first showed quantitative surgical debulking of human GBM tumors in mice, which resulted in increased survival. Next, sECM encapsulation of engineered stem cells increased their retention in the tumor resection cavity, permitted tumor-selective migration and release of diagnostic and therapeutic proteins in vivo. Simulating the clinical scenario of GBM treatment, the release of tumor-selective S-TRAIL (secretable tumor necrosis factor apoptosis inducing ligand) from sECM-encapsulated stem cells in the resection cavity eradicated residual tumor cells by inducing caspase-mediated apoptosis, delayed tumor regrowth and significantly increased survival of mice. This study demonstrates the efficacy of encapsulated therapeutic stem cells in mouse models of GBM resection and may have implications for developing effective therapies for GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumor resection prolongs survival of mice bearing GBM.
Figure 2: Characterizing engineered mNSCs in biocompatible sECM in vitro and in vivo.
Figure 3: mNSCs expressing therapeutic S-TRAIL induce GBM cell death in vitro.
Figure 4: sECM-encapsulated mNSC-S-TRAIL cells transplanted into the tumor resection cavity increase survival of mice.
Figure 5: sECM-encapsulated therapeutic human MSCs have anti-tumor effects on primary invasive human GBMs in vitro and in vivo.

Similar content being viewed by others

References

  1. Adamson, C. et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin. Investig. Drugs 18, 1061–1083 (2009).

    Article  CAS  Google Scholar 

  2. Affronti, M.L. et al. Overall survival of newly diagnosed glioblastoma patients receiving carmustine wafers followed by radiation and concurrent temozolomide plus rotational multiagent chemotherapy. Cancer 115, 3501–3511 (2009).

    Article  CAS  Google Scholar 

  3. Wen, P.Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).

    Article  CAS  Google Scholar 

  4. Asthagiri, A.R., Pouratian, N., Sherman, J., Ahmed, G. & Shaffrey, M.E. Advances in brain tumor surgery. Neurol. Clin. 25, 975–1003, viii–ix (2007).

    Article  Google Scholar 

  5. Erpolat, O.P. et al. Outcome of newly diagnosed glioblastoma patients treated by radiotherapy plus concomitant and adjuvant temozolomide: a long-term analysis. Tumori 95, 191–197 (2009).

    Article  Google Scholar 

  6. Minniti, G. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma in elderly patients. J. Neurooncol. 88, 97–103 (2008).

    Article  CAS  Google Scholar 

  7. Muldoon, L.L. et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J. Clin. Oncol. 25, 2295–2305 (2007).

    Article  CAS  Google Scholar 

  8. Jain, R.K., Tong, R.T. & Munn, L.L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 67, 2729–2735 (2007).

    Article  CAS  Google Scholar 

  9. Sarin, H. Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J. Transl. Med. 7, 77 (2009).

    Article  Google Scholar 

  10. Corsten, M.F. & Shah, K. Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol. 9, 376–384 (2008).

    Article  Google Scholar 

  11. Balyasnikova, I.V., Ferguson, S.D., Han, Y., Liu, F. & Lesniak, M.S. Therapeutic effect of neural stem cells expressing TRAIL and bortezomib in mice with glioma xenografts. Cancer Lett. 310, 148–159 (2011).

    Article  CAS  Google Scholar 

  12. Ehtesham, M. et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 62, 7170–7174 (2002).

    CAS  PubMed  Google Scholar 

  13. Germano, I.M., Uzzaman, M., Benveniste, R.J., Zaurova, M. & Keller, G. Apoptosis in human glioblastoma cells produced using embryonic stem cell-derived astrocytes expressing tumor necrosis factor-related apoptosis-inducing ligand. J. Neurosurg. 105, 88–95 (2006).

    Article  CAS  Google Scholar 

  14. Menon, L.G. et al. Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 27, 2320–2330 (2009).

    Article  CAS  Google Scholar 

  15. Shah, K. Mesenchymal stem cells engineered for cancer therapy. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2011.06.010 (29 June 2011).

  16. Pan, L., Ren, Y., Cui, F. & Xu, Q. Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J. Neurosci. Res. 87, 3207–3220 (2009).

    Article  CAS  Google Scholar 

  17. Park, K.I., Teng, Y.D. & Snyder, E.Y. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat. Biotechnol. 20, 1111–1117 (2002).

    Article  CAS  Google Scholar 

  18. Teng, Y.D. et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci. USA 99, 3024–3029 (2002).

    Article  CAS  Google Scholar 

  19. Ma, W. et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp. Neurol. 190, 276–288 (2004).

    Article  CAS  Google Scholar 

  20. Potter, W., Kalil, R.E. & Kao, W.J. Biomimetic material systems for neural progenitor cell-based therapy. Front. Biosci. 13, 806–821 (2008).

    Article  CAS  Google Scholar 

  21. Hingtgen, S. et al. Targeting multiple pathways in gliomas with stem cell and viral delivered S-TRAIL and Temozolomide. Mol. Cancer Ther. 7, 3575–3585 (2008).

    Article  CAS  Google Scholar 

  22. Shah, K. et al. Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. J. Neurosci. 28, 4406–4413 (2008).

    Article  CAS  Google Scholar 

  23. Panner, A., James, C.D., Berger, M.S. & Pieper, R.O. mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol. Cell. Biol. 25, 8809–8823 (2005).

    Article  CAS  Google Scholar 

  24. Rieger, J., Naumann, U., Glaser, T., Ashkenazi, A. & Weller, M. APO2 ligand: a novel lethal weapon against malignant glioma? FEBS Lett. 427, 124–128 (1998).

    Article  CAS  Google Scholar 

  25. Akbar, U. et al. Delivery of temozolomide to the tumor bed via biodegradable gel matrices in a novel model of intracranial glioma with resection. J. Neurooncol. 94, 203–212 (2009).

    Article  CAS  Google Scholar 

  26. de Oliveira, M.S. et al. Anti-proliferative effect of the gastrin-release peptide receptor antagonist RC-3095 plus temozolomide in experimental glioblastoma models. J. Neurooncol. 93, 191–201 (2009).

    Article  CAS  Google Scholar 

  27. Orive, G., Anitua, E., Pedraz, J.L. & Emerich, D.F. Biomaterials for promoting brain protection, repair and regeneration. Nat. Rev. Neurosci. 10, 682–692 (2009).

    Article  CAS  Google Scholar 

  28. Xu, X., Yang, G., Zhang, H. & Prestwich, G.D. Evaluating dual activity LPA receptor pan-antagonist/autotaxin inhibitors as anti-cancer agents in vivo using engineered human tumors. Prostaglandins Other Lipid Mediat. 89, 140–146 (2009).

    Article  CAS  Google Scholar 

  29. Mooney, D.J. & Vandenburgh, H. Cell delivery mechanisms for tissue repair. Cell Stem Cell 2, 205–213 (2008).

    Article  CAS  Google Scholar 

  30. Terrovitis, J. et al. Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J. Am. Coll. Cardiol. 52, 1652–1660 (2008).

    Article  Google Scholar 

  31. Ashkenazi, A. & Dixit, V.M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  Google Scholar 

  32. Sasportas, L.S. et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc. Natl. Acad. Sci. USA 106, 4822–4827 (2009).

    Article  CAS  Google Scholar 

  33. Hingtgen, S.D., Kasmieh, R., van de Water, J., Weissleder, R. & Shah, K. A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy. Stem Cells 28, 832–841 (2010).

    Article  CAS  Google Scholar 

  34. Tian, X. et al. Modulation of chop-dependent DR5 expression by nelfinavir sensitizes glioblastoma multiforme cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J. Biol. Chem. 286, 29408–29416 (2011).

    Article  CAS  Google Scholar 

  35. Chen, J., Sun, X., Yang, W., Jiang, G. & Li, X. Cisplatin-enhanced sensitivity of glioblastoma multiforme U251 cells to adenovirus-delivered TRAIL in vitro. Tumour Biol. 31, 613–622 (2010).

    Article  CAS  Google Scholar 

  36. Kahana, S. et al. Proteasome inhibitors sensitize glioma cells and glioma stem cells to TRAIL-induced apoptosis by PKCɛ-dependent downregulation of AKT and XIAP expressions. Cell. Signal. 23, 1348–1357 (2011).

    Article  CAS  Google Scholar 

  37. Siegelin, M.D., Gaiser, T., Habel, A. & Siegelin, Y. Daidzein overcomes TRAIL-resistance in malignant glioma cells by modulating the expression of the intrinsic apoptotic inhibitor, bcl-2. Neurosci. Lett. 454, 223–228 (2009).

    Article  CAS  Google Scholar 

  38. Kim, S.M. et al. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells 28, 2217–2228 (2010).

    Article  Google Scholar 

  39. van Eekelen, M. et al. Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 29, 3185–3195 (2010).

    Article  CAS  Google Scholar 

  40. Ren, B. et al. A double hit to kill tumor and endothelial cells by TRAIL and antiangiogenic 3TSR. Cancer Res. 69, 3856–3865 (2009).

    Article  CAS  Google Scholar 

  41. Kock, N., Kasmieh, R., Weissleder, R. & Shah, K. Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL. Neoplasia 9, 435–442 (2007).

    Article  CAS  Google Scholar 

  42. Pandita, A., Aldape, K.D., Zadeh, G., Guha, A. & James, C.D. Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosom. Cancer 39, 29–36 (2004).

    Article  CAS  Google Scholar 

  43. Wakimoto, H. et al. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res. 69, 3472–3481 (2009).

    Article  CAS  Google Scholar 

  44. Bagci-Onder, T., Wakimoto, H., Anderegg, M., Cameron, C. & Shah, K. A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res. 71, 154–163 (2011).

    Article  CAS  Google Scholar 

  45. Snyder, E.Y. The risk of putting something where it does not belong: Mesenchymal stem cells produce masses in the brain. Exp. Neurol. 230, 75–77 (2011).

    Article  Google Scholar 

  46. Hall, B. et al. Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int. J. Hematol. 86, 8–16 (2007).

    Article  CAS  Google Scholar 

  47. Karnoub, A.E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  Google Scholar 

  48. Grigoriadis, N. et al. Variable behavior and complications of autologous bone marrow mesenchymal stem cells transplanted in experimental autoimmune encephalomyelitis. Exp. Neurol. 230, 78–89 (2011).

    Article  Google Scholar 

  49. Choi, S.A. et al. Human adipose tissue-derived mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur. J. Cancer published online, doi:10.1016/j.ejca.2011.04.033 (8 June 2011).

  50. Mattis, V.B. & Svendsen, C.N. Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol. 10, 383–394 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Prestwich (University of Utah) and T. Zarembinski (Biotime Inc.) for providing us with sECMs, H. Wakimoto (Massachusetts General Hospital) for providing the primary GBM lines and D. Bhere for critical reading of the manuscript. This work was supported by the Alliance for Cancer Cell and Gene Therapy (K.S.), American Cancer Society (K.S.) and James McDonald Foundation (K.S.).

Author information

Authors and Affiliations

Authors

Contributions

K.S. and T.M.K. designed research; T.M.K., J.-L.F., S.H. and K.S. performed research; T.M.K., S.H. and K.S. analyzed data and wrote the paper.

Corresponding author

Correspondence to Khalid Shah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauer, T., Figueiredo, JL., Hingtgen, S. et al. Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat Neurosci 15, 197–204 (2012). https://doi.org/10.1038/nn.3019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3019

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing