Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Semaphorin 3E–Plexin-D1 signaling controls pathway-specific synapse formation in the striatum

Abstract

The proper formation of synaptic connectivity in the mammalian brain is critical for complex behavior. In the striatum, balanced excitatory synaptic transmission from multiple sources onto two classes of principal neurons is required for coordinated and voluntary motor control. Here we show that the interaction between the secreted semaphorin 3E (Sema3E) and its receptor Plexin-D1 is a critical determinant of synaptic specificity in cortico-thalamo-striatal circuits in mice. We find that Sema3e (encoding Sema3E) is highly expressed in thalamostriatal projection neurons, whereas in the striatum Plxnd1 (encoding Plexin-D1) is selectively expressed in direct-pathway medium spiny neurons (MSNs). Despite physical intermingling of the MSNs, genetic ablation of Plxnd1 or Sema3e results in functional and anatomical rearrangement of thalamostriatal synapses specifically in direct-pathway MSNs without effects on corticostriatal synapses. Thus, our results demonstrate that Sema3E and Plexin-D1 specify the degree of glutamatergic connectivity between a specific source and target in the complex circuitry of the basal ganglia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complementary expression pattern of Sema3e and Plxnd1 in the cortex-thalamus-basal ganglia circuit.
Figure 2: Plxnd1 is expressed selectively in direct pathway MSNs in the striatum.
Figure 3: Deletion of Plxnd1 markedly increases mEPSC frequency in direct pathway MSNs.
Figure 4: Deletion of Plxnd1 slightly decreases spine density in direct pathway MSNs.
Figure 5: Deletion of Sema3e increases mEPSC frequency and decreases spine density in direct pathway MSNs.
Figure 6: Postnatal deletion of Plxnd1 perturbs spine density and mEPSC frequency in direct but not indirect pathway MSNs.
Figure 7: Loss of Plxnd1 in direct pathway MSNs selectively increases the strength of thalamostriatal glutamatergic inputs.
Figure 8: Loss of Plxnd1 in direct pathway MSNs increases the number of vGluT2 and GluR1 positive puncta on direct pathway MSNs.

Similar content being viewed by others

References

  1. Sanes, J.R. & Yamagata, M. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161–195 (2009).

    Article  CAS  Google Scholar 

  2. Williams, M.E., de Wit, J. & Ghosh, A. Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 68, 9–18 (2010).

    Article  CAS  Google Scholar 

  3. Surmeier, D.J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235 (2007).

    Article  CAS  Google Scholar 

  4. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  Google Scholar 

  5. Wichmann, T. & DeLong, M.R. Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol. 6, 751–758 (1996).

    Article  CAS  Google Scholar 

  6. Wilson, C.J. Basal ganglia. in The Synaptic Organization of the Brain (ed. Shepherd, G.M.) 361–414 (Oxford Univ. Press, 2004).

  7. Surmeier, D.J., Song, W.J. & Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579–6591 (1996).

    Article  CAS  Google Scholar 

  8. Kawaguchi, Y., Wilson, C.J. & Emson, P.C. Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J. Neurophysiol. 62, 1052–1068 (1989).

    Article  CAS  Google Scholar 

  9. Smith, Y., Raju, D.V., Pare, J.F. & Sidibe, M. The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci. 27, 520–527 (2004).

    Article  CAS  Google Scholar 

  10. Ding, J., Peterson, J.D. & Surmeier, D.J. Corticostriatal and thalamostriatal synapses have distinctive properties. J. Neurosci. 28, 6483–6492 (2008).

    Article  CAS  Google Scholar 

  11. Doig, N.M., Moss, J. & Bolam, J.P. Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J. Neurosci. 30, 14610–14618 (2010).

    Article  CAS  Google Scholar 

  12. Raju, D.V., Shah, D.J., Wright, T.M., Hall, R.A. & Smith, Y. Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments in rats. J. Comp. Neurol. 499, 231–243 (2006).

    Article  CAS  Google Scholar 

  13. Yamagata, M. & Sanes, J.R. Synaptic localization and function of Sidekick recognition molecules require MAGI scaffolding proteins. J. Neurosci. 30, 3579–3588 (2010).

    Article  CAS  Google Scholar 

  14. Yamagata, M., Weiner, J.A. & Sanes, J.R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002).

    Article  CAS  Google Scholar 

  15. Shen, K., Fetter, R.D. & Bargmann, C.I. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116, 869–881 (2004).

    Article  CAS  Google Scholar 

  16. Yamagata, M. & Sanes, J.R. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451, 465–469 (2008).

    Article  CAS  Google Scholar 

  17. Matsuoka, R.L. et al. Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature 470, 259–263 (2011).

    Article  CAS  Google Scholar 

  18. Pecho-Vrieseling, E., Sigrist, M., Yoshida, Y., Jessell, T.M. & Arber, S. Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition. Nature 459, 842–846 (2009).

    Article  CAS  Google Scholar 

  19. Chauvet, S. et al. Gating of Sema3E/PlexinD1 signaling by neuropilin-1 switches axonal repulsion to attraction during brain development. Neuron 56, 807–822 (2007).

    Article  CAS  Google Scholar 

  20. Fiala, J.C., Feinberg, M., Popov, V. & Harris, K.M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    Article  CAS  Google Scholar 

  21. Rakic, P., Bourgeois, J.P., Eckenhoff, M.F., Zecevic, N. & Goldman-Rakic, P.S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986).

    Article  CAS  Google Scholar 

  22. Alvarez, V.A. & Sabatini, B.L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97 (2007).

    Article  CAS  Google Scholar 

  23. Heintz, N. BAC to the future: the use of bac transgenic mice for neuroscience research. Nat. Rev. Neurosci. 2, 861–870 (2001).

    Article  CAS  Google Scholar 

  24. Gu, C. et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307, 265–268 (2005).

    Article  CAS  Google Scholar 

  25. Jacobs, E.C. et al. Visualization of corticofugal projections during early cortical development in a tau-GFP-transgenic mouse. Eur. J. Neurosci. 25, 17–30 (2007).

    Article  Google Scholar 

  26. Ding, J.B., Guzman, J.N., Peterson, J.D., Goldberg, J.A. & Surmeier, D.J. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67, 294–307 (2010).

    Article  CAS  Google Scholar 

  27. Micheva, K.D. & Smith, S.J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    Article  CAS  Google Scholar 

  28. Watakabe, A., Ohsawa, S., Hashikawa, T. & Yamamori, T. Binding and complementary expression patterns of semaphorin 3E and plexin D1 in the mature neocortices of mice and monkeys. J. Comp. Neurol. 499, 258–273 (2006).

    Article  CAS  Google Scholar 

  29. Suto, F. et al. Interactions between plexin-A2, plexin-A4, and semaphorin 6A control lamina-restricted projection of hippocampal mossy fibers. Neuron 53, 535–547 (2007).

    Article  CAS  Google Scholar 

  30. Tran, T.S. et al. Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462, 1065–1069 (2009).

    Article  CAS  Google Scholar 

  31. Vikis, H.G., Li, W. & Guan, K.L. The plexin-B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes Dev. 16, 836–845 (2002).

    Article  CAS  Google Scholar 

  32. Luo, L. Rho GTPases in neuronal morphogenesis. Nat. Rev. Neurosci. 1, 173–180 (2000).

    Article  CAS  Google Scholar 

  33. Fox, M.A. et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129, 179–193 (2007).

    Article  CAS  Google Scholar 

  34. Terauchi, A. et al. Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature 465, 783–787 (2010).

    Article  CAS  Google Scholar 

  35. Johnson-Venkatesh, E.M. & Umemori, H. Secreted factors as synaptic organizers. Eur. J. Neurosci. 32, 181–190 (2010).

    Article  Google Scholar 

  36. Graybiel, A.M., Aosaki, T., Flaherty, A.W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    Article  CAS  Google Scholar 

  37. Wickens, J.R., Reynolds, J.N. & Hyland, B.I. Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol. 13, 685–690 (2003).

    Article  CAS  Google Scholar 

  38. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006).

    Article  Google Scholar 

  39. Matsumoto, N., Minamimoto, T., Graybiel, A.M. & Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol. 85, 960–976 (2001).

    Article  CAS  Google Scholar 

  40. Minamimoto, T. & Kimura, M. Participation of the thalamic CM-Pf complex in attentional orienting. J. Neurophysiol. 87, 3090–3101 (2002).

    Article  Google Scholar 

  41. Zhang, Y. et al. Tie2Cre-mediated inactivation of plexinD1 results in congenital heart, vascular and skeletal defects. Dev. Biol. 325, 82–93 (2009).

    Article  CAS  Google Scholar 

  42. Lu, W. et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62, 254–268 (2009).

    Article  CAS  Google Scholar 

  43. Tsai, H.C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  CAS  Google Scholar 

  44. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    Article  Google Scholar 

  45. Steiner, P. et al. Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron 60, 788–802 (2008).

    Article  CAS  Google Scholar 

  46. Ding, J.B., Takasaki, K.T. & Sabatini, B.L. Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63, 429–437 (2009).

    Article  CAS  Google Scholar 

  47. Schmitz, S.K. et al. Automated analysis of neuronal morphology, synapse number and synaptic recruitment. J. Neurosci. Methods 195, 185–193 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Ding (Harvard NeuroDiscovery Center) for assistance in image analysis, T. Jessell (Columbia University) and Y. Yoshida (Cincinnati Children's Hospital Medical Center) for providing Plexin-D1 conditional mice, C. Henderson (Columbia University) and F. Mann (Université de la Méditerranée) for Sema3E mice, A. Kautzman, B. Stevens and E. Benecchi for assistance with array tomography and J. Hjorth for assistance with Scholl analysis. We thank members of Sabatini and Gu laboratories for discussions. This work was funded by a Lefler postdoctoral fellowship (W.-J.O.), the Whitehall and Klingenstein foundations (C.G.), the Parkinson's Disease Foundation (PDF-FBS-1106, J.B.D.) and the US National Institute of Neurological Disorders and Stroke (K99-NS075136, J.B.D.; NS046579, B.L.S.; NS064583, C.G.).

Author information

Authors and Affiliations

Authors

Contributions

J.B.D. and W.-J.O. performed the experiments and conducted the data analyses. B.L.S. and C.G. supervised the project. J.B.D., W.-J.O., B.L.S. and C.G. designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Bernardo L Sabatini or Chenghua Gu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 16389 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, J., Oh, WJ., Sabatini, B. et al. Semaphorin 3E–Plexin-D1 signaling controls pathway-specific synapse formation in the striatum. Nat Neurosci 15, 215–223 (2012). https://doi.org/10.1038/nn.3003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing