Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computational design of enhanced learning protocols

Abstract

Learning and memory are influenced by the temporal pattern of training stimuli. However, the mechanisms that determine the effectiveness of a particular training protocol are not well understood. We tested the hypothesis that the efficacy of a protocol is determined in part by interactions among biochemical cascades that underlie learning and memory. Previous findings suggest that the protein kinase A (PKA) and extracellular signal–regulated kinase (ERK) cascades are necessary to induce long-term synaptic facilitation (LTF) in Aplysia, a neuronal correlate of memory. We developed a computational model of the PKA and ERK cascades and used it to identify a training protocol that maximized PKA and ERK interactions. In vitro studies confirmed that the protocol enhanced LTF. Moreover, the protocol enhanced the levels of phosphorylation of the transcription factor CREB1. Behavioral training confirmed that long-term memory also was enhanced by the protocol. These results illustrate the feasibility of using computational models to design training protocols that improve memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computational model of PKA and ERK pathways.
Figure 2: The enhanced protocol increased the magnitude and duration of LTF.
Figure 3: Enhanced protocol increased the levels of phosphorylated CREB1.
Figure 4: Enhanced protocol induced LTS that persisted for at least 5 d.

Similar content being viewed by others

References

  1. Cepeda, N.J., Pashler, H., Vul, E., Wixted, J.T. & Rohrer, D. Distributed practice in verbal recall tasks: a review and quantitative synthesis. Psychol. Bull. 132, 354–380 (2006).

    Article  PubMed  Google Scholar 

  2. Liu, R.Y., Cleary, L.J. & Byrne, J.H. The requirement for enhanced CREB1 expression in consolidation of long-term synaptic facilitation and long-term excitability in sensory neurons of Aplysia. J. Neurosci. 31, 6871–6879 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smolen, P., Baxter, D.A. & Byrne, J.H. Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems. Am. J. Physiol. 274, 531–542 (1998).

    Article  Google Scholar 

  4. Byrne, J.H. et al. Learning and memory: basic mechanisms. in From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience 2nd edn. (eds. Byrne, J.H. & Roberts, J.L.) 539–608 (Elsevier, 2009).

  5. Frost, W.N., Castellucci, V.F., Hawkins, R.D. & Kandel, E.R. Monosynaptic connections made by the sensory neurons of the gill- and siphon-withdrawal reflex in Aplysia participate in the storage of long-term memory for sensitization. Proc. Natl. Acad. Sci. USA 82, 8266–8269 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sutton, M.A., Ide, J., Masters, S.E. & Carew, T.J. Interaction between amount and pattern of training in the induction of intermediate- and long-term memory for sensitization in Aplysia. Learn. Mem. 9, 29–40 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Philips, G.T., Tzvetkova, E.I. & Carew, T.J. Transient mitogen-activated protein kinase activation is confined to a narrow temporal window required for the induction of two-trial long-term memory in Aplysia. J. Neurosci. 27, 13701–13705 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Philips, G.T., Sherff, C.M., Menges, S.A. & Carew, T.J. The tail-elicited tail withdrawal reflex of Aplysia is mediated centrally at tail sensory-motor synapses and exhibits sensitization across multiple temporal domains. Learn. Mem. 18, 272–282 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wainwright, M.L., Zhang, H., Byrne, J.H. & Cleary, L.J. Localized neuronal outgrowth induced by long-term sensitization training. J. Neurosci. 22, 4132–4141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cleary, L.J., Lee, W.L. & Byrne, J.H. Cellular correlates of long-term sensitization in Aplysia. J. Neurosci. 18, 5988–5998 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marinesco, S. & Carew, T.J. Serotonin release evoked by tail nerve stimulation in the CNS of Aplysia: characterization and relationship to heterosynaptic plasticity. J. Neurosci. 22, 2299–2312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldsmith, B.A. & Abrams, T.W. Reversal of synaptic depression by serotonin at Aplysia sensory neuron synapses involves activation of adenylyl cyclase. Proc. Natl. Acad. Sci. USA 88, 9021–9025 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Müller, U. & Carew, T.J. Serotonin induces temporally and mechanistically distinct phases of persistent PKA activity in Aplysia sensory neurons. Neuron 21, 1423–1434 (1998).

    Article  PubMed  Google Scholar 

  14. Ocorr, K.A. & Byrne, J.H. Membrane responses and changes in cAMP levels in Aplysia sensory neurons produced by serotonin, tryptamine, FMRFamide and small cardioactive peptideB (SCPB). Neurosci. Lett. 55, 113–118 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Chain, D.G. et al. Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 22, 147–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Martin, K.C. et al. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 18, 899–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Sharma, S.K. & Carew, T.J. The roles of ERK cascades in synaptic plasticity and memory in Aplysia: facilitatory effects and inhibitory constraints. Learn. Mem. 11, 373–378 (2004).

    Article  PubMed  Google Scholar 

  18. Sharma, S.K. et al. Differential role of mitogen-activated protein kinase in three distinct phases of memory for sensitization in Aplysia. J. Neurosci. 23, 3899–3907 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartsch, D. et al. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83, 979–992 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Dash, P.K. & Moore, A.N. Characterization and phosphorylation of CREB-like proteins in Aplysia central nervous system. Brain Res. Mol. Brain Res. 39, 43–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Alberini, C.M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, Y.S., Bailey, C.H., Kandel, E.R. & Kaang, B.K. Transcriptional regulation of long-term memory in the marine snail Aplysia. Mol. Brain 1, 3 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Montarolo, P.G. et al. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234, 1249–1254 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Alberini, C.M., Ghirardi, M., Metz, R. & Kandel, E.R. C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76, 1099–1114 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Casadio, A. et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99, 221–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, J.A., Kim, H., Lee, Y.S. & Kaang, B.K. Overexpression and RNA interference of Ap-cyclic AMP-response element binding protein-2, a repressor of long-term facilitation, in Aplysia kurodai sensory-to-motor synapses. Neurosci. Lett. 337, 9–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, J.A. et al. PKA-activated ApAF-ApC/EBP heterodimer is a key downstream effector of ApCREB and is necessary and sufficient for the consolidation of long-term facilitation. J. Cell Biol. 174, 827–838 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bartsch, D., Casadio, A., Karl, K.A., Serodio, P. & Kandel, E.R. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95, 211–223 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Mauelshagen, J., Sherff, C.M. & Carew, T.J. Differential induction of long-term synaptic facilitation by spaced and massed applications of serotonin at sensory neuron synapses of Aplysia californica. Learn. Mem. 5, 246–256 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hintzman, D.L. Repetition and memory. in The Psychology of Learning and Motivation Vol. 10 (ed. Bower, G.H.) 47–93 (Academic Press, 1976).

  31. Cepeda, N.J. et al. Optimizing distributed practice: theoretical analysis and practical implications. Exp. Psychol. 56, 236–246 (2009).

    Article  PubMed  Google Scholar 

  32. Liu, R.Y., Shah, S., Cleary, L.J. & Byrne, J.H. Serotonin- and training-induced dynamic regulation of CREB2 in Aplysia. Learn. Mem. 18, 245–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, J.Y., Chen, Y. & Schacher, S. Protein kinase C regulates local synthesis and secretion of a neuropeptide required for activity-dependent long-term synaptic plasticity. J. Neurosci. 27, 8927–8939 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, D.O. et al. Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science 324, 1536–1540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cai, D., Chen, S. & Glanzman, D.L. Postsynaptic regulation of long-term facilitation in Aplysia. Curr. Biol. 18, 920–925 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cleary, L.J. & Byrne, J.H. Identification and characterization of a multifunction neuron contributing to defensive arousal in Aplysia. J. Neurophysiol. 70, 1767–1776 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. White, J.A., Ziv, I., Cleary, L.J., Baxter, D.A. & Byrne, J.H. The role of interneurons in controlling the tail-withdrawal reflex in Aplysia: a network model. J. Neurophysiol. 70, 1777–1786 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Pettigrew, D.B., Smolen, P., Baxter, D.A. & Byrne, J.H. Dynamic properties of regulatory motifs associated with induction of three temporal domains of memory in Aplysia. J. Comput. Neurosci. 18, 163–181 (2005).

    Article  PubMed  Google Scholar 

  39. Kennedy, J. & Eberhart, R. Particle swarm optimization. Proc. IEEE Int. Conf. Neural Networks 4, 1942–1948 (1995).

    Article  Google Scholar 

  40. Emptage, N.J. & Carew, T.J. Long-term synaptic facilitation in the absence of short-term facilitation in Aplysia neurons. Science 262, 253–256 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, R.Y., Fioravante, D., Shah, S. & Byrne, J.H. cAMP response element-binding protein 1 feedback loop is necessary for consolidation of long-term synaptic facilitation in Aplysia. J. Neurosci. 28, 1970–1976 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ermentrout, B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (Society for Industrial and Applied Mathematics, 2002).

  43. Chin, J., Liu, R.Y., Cleary, L.J., Eskin, A. & Byrne, J.H. TGF-β1–induced long-term changes in neuronal excitability in Aplysia sensory neurons depend on ERK. J. Neurophysiol. 95, 3286–3290 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Schacher, S. & Proshansky, E. Neurite regeneration by Aplysia neurons in dissociated cell culture: modulation by Aplysia hemolymph and the presence of the initial axonal segment. J. Neurosci. 3, 2403–2413 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mohamed, H.A., Yao, W., Fioravante, D., Smolen, P.D. & Byrne, J.H. cAMP-response elements in Aplysia creb1, creb2, and Ap-uch promoters: implications for feedback loops modulating long term memory. J. Biol. Chem. 280, 27035–27043 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.J. Byrne for his help with implementing the particle swarm optimization algorithm. This work was supported by US National Institutes of Health grants P01 NS038310, R01 NS019895 and R01 NS073974, and by a training fellowship from the Keck Center National Library of Medicine Training Program in Biomedical Informatics of the Gulf Coast Consortia (grant T15LM007093).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. implemented the computational model and ran all simulations. R.-Y.L. performed the electrophysiological and behavioral experiments. L.J.C. helped design and supervise the behavioral experiments. R.-Y.L. and G.A.H. performed the immunofluorescence experiments. D.A.B. performed the statistical analyses and prepared the illustrations. P.S. and D.A.B. helped design and supervise the computational studies. J.H.B. supervised and contributed to all aspects of these studies. All of the authors discussed the results and contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to John H Byrne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 69 kb)

Supplementary Movie 1

Schematic represent of algorithm used to generate training protocols. The QuickTime movie illustrates how 10,000 different protocols were generated by systematically varying ISIs between 5-HT pulses. Protocols are numbered from 1 to 10,000. Protocol 1 is a massed protocol (i.e., 25 min continuous 5-HT application), whereas Protocol 10,000 has uniform 50-min intervals between the start of the pulses. (MOV 10150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, RY., Heberton, G. et al. Computational design of enhanced learning protocols. Nat Neurosci 15, 294–297 (2012). https://doi.org/10.1038/nn.2990

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing