Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting

Abstract

The polarized distribution of neuronal proteins to axons and dendrites relies on microtubule-binding proteins such as CRMP, directed motors such as the kinesin UNC-104 (Kif1A) and diffusion barriers such as ankyrin. The causative relationships among these molecules are unknown. We show here that Caenorhabditis elegans CRMP (UNC-33) acts early in neuronal development, together with ankyrin (UNC-44), to organize microtubule asymmetry and axon-dendrite sorting. In unc-33 and unc-44 mutants, axonal proteins were mislocalized to dendrites and vice versa, suggesting bidirectional failures of axon-dendrite identity. unc-44 directed UNC-33 localization to axons, where it was enriched in a region that resembled the axon initial segment. unc-33 and unc-44 were both required to establish the asymmetric dynamics of axonal and dendritic microtubules; in their absence, microtubules were disorganized, the axonal kinesin UNC-104 invaded dendrites, and inappropriate UNC-104 activity randomized axonal protein sorting. We suggest that UNC-44 and UNC-33 direct polarized sorting through their global effects on neuronal microtubule organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: unc-33 mutants mislocalize presynaptic proteins to dendrites.
Figure 2: UNC-33L functions in PVD during the establishment of polarity.
Figure 3: UNC-33L is enriched in PVD axons.
Figure 4: unc-104 kinesin mislocalizes presynaptic proteins to dendrites in unc-33 mutants.
Figure 5: UNC-104 is mislocalized to dendrites in unc-33 mutants.
Figure 6: A sensory chemoreceptor protein is mislocalized to axons in unc-33 mutants.
Figure 7: unc-44/ankyrin mutations disrupt polarized protein sorting and UNC-33L localization.
Figure 8: Microtubule defects in unc-33 and unc-44 mutants.

Similar content being viewed by others

References

  1. Arimura, N. & Kaibuchi, K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat. Rev. Neurosci. 8, 194–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Barnes, A.P. & Polleux, F. Establishment of axon-dendrite polarity in developing neurons. Annu. Rev. Neurosci. 32, 347–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Witte, H., Neukirchen, D. & Bradke, F. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180, 619–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, W., Herman, R.K. & Shaw, J.E. Analysis of the Caenorhabditis elegans axonal guidance and outgrowth gene unc-33. Genetics 132, 675–689 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kimura, T., Watanabe, H., Iwamatsu, A. & Kaibuchi, K. Tubulin and CRMP-2 complex is transported via Kinesin-1. J. Neurochem. 93, 1371–1382 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Inagaki, N. et al. CRMP-2 induces axons in cultured hippocampal neurons. Nat. Neurosci. 4, 781–782 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Fukata, Y. et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat. Cell Biol. 4, 583–591 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Arimura, N. et al. Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev. Cell 16, 675–686 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Kawano, Y. et al. CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol. Cell. Biol. 25, 9920–9935 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Burton, P.R. & Paige, J.L. Polarity of axoplasmic microtubules in the olfactory nerve of the frog. Proc. Natl. Acad. Sci. USA 78, 3269–3273 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heidemann, S.R., Landers, J.M. & Hamborg, M.A. Polarity orientation of axonal microtubules. J. Cell Biol. 91, 661–665 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Burton, P.R. Ultrastructure of the olfactory neuron of the bullfrog: the dendrite and its microtubules. J. Comp. Neurol. 242, 147–160 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Baas, P.W., Deitch, J.S., Black, M.M. & Banker, G.A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85, 8335–8339 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grubb, M.S. & Burrone, J. Building and maintaining the axon initial segment. Curr. Opin. Neurobiol. 20, 481–488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Winckler, B., Forscher, P. & Mellman, I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397, 698–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Jenkins, S.M. & Bennett, V. Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J. Cell Biol. 155, 739–746 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hedstrom, K.L., Ogawa, Y. & Rasband, M.N. AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. J. Cell Biol. 183, 635–640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song, A.H. et al. A selective filter for cytoplasmic transport at the axon initial segment. Cell 136, 1148–1160 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Sobotzik, J.M. et al. AnkyrinG is required to maintain axo-dendritic polarity in vivo. Proc. Natl. Acad. Sci. USA 106, 17564–17569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quinn, C.C. et al. TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J. Neurosci. 23, 2815–2823 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ogawa, Y. et al. Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton. J. Neurosci. 26, 5230–5239 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brot, S. et al. CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2. J. Neurosci. 30, 10639–10654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hedgecock, E.M., Culotti, J.G., Thomson, J.N. & Perkins, L.A. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol. 111, 158–170 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Otsuka, A.J. et al. An ankyrin-related gene (unc-44) is necessary for proper axonal guidance in Caenorhabditis elegans. J. Cell Biol. 129, 1081–1092 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Tsuboi, D., Hikita, T., Qadota, H., Amano, M. & Kaibuchi, K. Regulatory machinery of UNC-33 Ce-CRMP localization in neurites during neuronal development in Caenorhabditis elegans. J. Neurochem. 95, 1629–1641 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Albeg, A. et al. C. elegans multi-dendritic sensory neurons: morphology and function. Mol. Cell. Neurosci. 46, 308–317 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  30. Treinin, M., Gillo, B., Liebman, L. & Chalfie, M. Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc. Natl. Acad. Sci. USA 95, 15492–15495 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nonet, M.L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8061–8073 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crump, J.G., Zhen, M., Jin, Y. & Bargmann, C.I. The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron 29, 115–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Yonekawa, Y. et al. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J. Cell Biol. 141, 431–441 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hall, D.H. & Hedgecock, E.M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837–847 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Dwyer, N.D., Adler, C.E., Crump, J.G., L'Etoile, N.D. & Bargmann, C.I. Polarized dendritic transport and the AP-1 mu1 clathrin adaptor UNC-101 localize odorant receptors to olfactory cilia. Neuron 31, 277–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, H.M., Brust-Mascher, I. & Scholey, J.M. Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. J. Neurosci. 21, 3749–3755 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dwyer, N.D., Troemel, E.R., Sengupta, P. & Bargmann, C.I. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 93, 455–466 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Wolff, A. et al. Distribution of glutamylated alpha and beta-tubulin in mouse tissues using a specific monoclonal antibody, GT335. Eur. J. Cell Biol. 59, 425–432 (1992).

    CAS  PubMed  Google Scholar 

  39. Siddiqui, S.S., Aamodt, E., Rastinejad, F. & Culotti, J. Anti-tubulin monoclonal antibodies that bind to specific neurons in Caenorhabditis elegans. J. Neurosci. 9, 2963–2972 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Srayko, M., Kaya, A., Stamford, J. & Hyman, A.A. Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev. Cell 9, 223–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Yi, J.J., Barnes, A.P., Hand, R., Polleux, F. & Ehlers, M.D. TGF-beta signaling specifies axons during brain development. Cell 142, 144–157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adler, C.E., Fetter, R.D. & Bargmann, C.I. UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nat. Neurosci. 9, 511–518 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ou, C.Y. et al. Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell 141, 846–858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rolls, M.M. et al. Polarity and intracellular compartmentalization of Drosophila neurons. Neural Dev. 2, 7 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meyrand, P., Weimann, J.M. & Marder, E. Multiple axonal spike initiation zones in a motor neuron: serotonin activation. J. Neurosci. 12, 2803–2812 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Palay, S.L., Sotelo, C., Peters, A. & Orkand, P.M. The axon hillock and the initial segment. J. Cell Biol. 38, 193–201 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H. & Plasterk, R.H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28, 160–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Ruvkun, G. & Giusto, J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 338, 313–319 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Ghenoiu, P. Nurse, Y. Saheki, S. Shaham, M. Tsunozaki, M. Heiman, A. Kelly, T. Starich and members of our labs for advice and comments on the manuscript, C. Janke (Institut Curie) and B. Edde (Universite Pierre et Marie Curie) for antibodies, and Y. Saheki (Rockefeller University) and the Caenorhabditis Genetics Center for strains. C.I.B. and K.S. are Investigators of the Howard Hughes Medical Institute. This work was supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.A.M. designed, conducted and interpreted most experiments and wrote the paper; M.K., G.J.W., K.S., L.W. and J.E.S. conducted and interpreted individual experiments with unc-33 and unc-44 mutants; S.P.K. generated the UNC-104 antibody and helped design transport experiments; C.I.B. designed and interpreted experiments and wrote the paper.

Corresponding author

Correspondence to Cornelia I Bargmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2124 kb)

Supplementary Video 1

Movement of EBP-2::GFP puncta in axons of wild type sensory neurons. Cell bodies are to the right. Displayed at 10x speed. Scale bar, 5 μm. (MOV 108 kb)

Supplementary Video 2

Movement of EBP-2::GFP puncta in proximal dendrites of wild type sensory neurons. Distal dendrites are to the left; cell bodies are to the right. Displayed at 10x speed. Scale bar, 5 μm. (MOV 561 kb)

Supplementary Video 3

Movement of EBP-2::GFP puncta in distal dendrites of wild type sensory neurons. Cilia are to the left; cell bodies are to the right (neither is visible). Displayed at 10x speed. Scale bar, 5 μm. (MOV 159 kb)

Supplementary Video 4

Movement of EBP-2::GFP puncta in axons of unc-33(mn407) sensory neurons. Cell bodies are to the right. Displayed at 10x speed. Scale bar, 5 μm. (MOV 183 kb)

Supplementary Video 5

Movement of EBP-2::GFP puncta in proximal dendrites of unc-33(mn407) sensory neurons. Distal dendrites are to the left; cell bodies are to the right. Displayed at 10x speed. Scale bar, 5 μm. (MOV 200 kb)

Supplementary Video 6

Movement of EBP-2::GFP puncta in distal dendrites of unc-33(mn407) sensory neurons. Cilia are to the left; cell bodies are to the right (neither is visible). Displayed at 10x speed. Scale bar, 5 μm. (MOV 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maniar, T., Kaplan, M., Wang, G. et al. UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat Neurosci 15, 48–56 (2012). https://doi.org/10.1038/nn.2970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing