Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cerebrovascular disorders: molecular insights and therapeutic opportunities

Abstract

Blood vessels in the nervous system have traditionally been considered neutral bystanders that only passively adapt their structure and function in response to the needs of neural cells. Emerging evidence suggests, however, that vessels and angiogenic molecules actively participate in the pathogenesis of neurological disorders. Here we will discuss molecular insights into neurological disorders resulting either from excessive vessel growth (cerebral vascular malformations) or improper vessel regression (neurodegeneration and white matter lesions). These genetic insights offer alternative therapeutic options, some of which are being evaluated in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular mechanisms of cerebrovascular malformations.
Figure 2: Molecular mechanisms identified in CCM.
Figure 3: Model of CADASIL.
Figure 4: Role and therapeutic potential of VEGF in ALS.

Similar content being viewed by others

References

  1. Carmeliet, P. & Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Winkler, E.A., Bell, R.D. & Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. San Millán Ruíz, D.S., Yilmaz, H. & Gailloud, P. Cerebral developmental venous anomalies: current concepts. Ann. Neurol. 66, 271–283 (2009).

    Article  Google Scholar 

  4. Leblanc, G.G., Golanov, E., Awad, I.A. & Young, W.L. Biology of vascular malformations of the brain. Stroke 40, e694–e702 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Riant, F., Bergametti, F., Ayrignac, X., Boulday, G. & Tournier-Lasserve, E. Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J. 277, 1070–1075 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Hauptman, J.S., Moftakhar, P., Dadour, A., Malkasian, D. & Martin, N.A. Advances in the biology of cerebral cavernous malformations. Surg. Neurol. Int. 1, 63 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. McDonald, D.A. et al. A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum. Mol. Genet. 20, 211–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Chan, A.C., Li, D.Y., Berg, M.J. & Whitehead, K.J. Recent insights into cerebral cavernous malformations: animal models of CCM and the human phenotype. FEBS J. 277, 1076–1083 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cunningham, K. et al. Conditional deletion of Ccm2 causes hemorrhage in the adult brain: a mouse model of human cerebral cavernous malformations. Hum. Mol. Genet. 20, 3198–3206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shovlin, C.L. Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev. 24, 203–219 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Corti, P. et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138, 1573–1582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park, S.O. et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 119, 3487–3496 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gridley, T. Notch signaling in the vasculature. Curr. Top. Dev. Biol. 92, 277–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, P. et al. Nonischemic cerebral venous hypertension promotes a pro-angiogenic stage through HIF-1 downstream genes and leukocyte-derived MMP-9. J. Cereb. Blood Flow Metab. 29, 1482–1490 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, H. et al. Brain arteriovenous malformation biology relevant to hemorrhage and implication for therapeutic development. Stroke 40, S95–S97 (2009).

    CAS  PubMed  Google Scholar 

  16. Dupuis-Girod, S., Bailly, S. & Plauchu, H. Hereditary hemorrhagic telangiectasia: from molecular biology to patient care. J. Thromb. Haemost. 8, 1447–1456 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Pardali, E., Goumans, M.J. & ten Dijke, P. Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol. 20, 556–567 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Ricard, N. et al. Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. Blood 116, 1604–1612 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Walker, E.J. et al. Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann. Neurol. 69, 954–962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boon, L.M., Mulliken, J.B. & Vikkula, M. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr. Opin. Genet. Dev. 15, 265–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Anand, S. et al. MicroRNA-132–mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med. 16, 909–914 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rizzo, M.T. & Leaver, H.A. Brain endothelial cell death: modes, signaling pathways, and relevance to neural development, homeostasis, and disease. Mol. Neurobiol. 42, 52–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto, Y., Craggs, L., Baumann, M., Kalimo, H. & Kalaria, R.N. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol. Appl. Neurobiol. 37, 94–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Ayata, C. CADASIL: experimental insights from animal models. Stroke 41, S129–S134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Assareh, A., Mather, K.A., Schofield, P.R., Kwok, J.B. & Sachdev, P.S. The genetics of white matter lesions. CNS Neurosci. Ther. published online, doi:10.1111/j.1755-5949.2010.00181.x (7 July 2010).

  26. Lewandowska, E. et al. Capillary vessel wall in CADASIL angiopathy. Folia Neuropathol. 48, 104–115 (2010).

    PubMed  Google Scholar 

  27. Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E. & Bousser, M.G. CADASIL. Lancet Neurol. 8, 643–653 (2009).

    Article  PubMed  Google Scholar 

  28. Joutel, A. et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J. Clin. Invest. 120, 433–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zlokovic, B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Iadecola, C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 120, 287–296 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haass, C. & Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Brun, A. & Englund, E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann. Neurol. 19, 253–262 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Mawuenyega, K.G. et al. Decreased clearance of CNS β-amyloid in Alzheimer's disease. Science 330, 1774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patel, N.S. et al. Alzheimer's beta-amyloid peptide blocks vascular endothelial growth factor mediated signaling via direct interaction with VEGFR-2. J. Neurochem. 112, 66–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, S.P. et al. Co-accumulation of vascular endothelial growth factor with beta-amyloid in the brain of patients with Alzheimer's disease. Neurobiol. Aging 25, 283–290 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. Ruiz de Almodovar, C., Lambrechts, D., Mazzone, M. & Carmeliet, P. Role and therapeutic potential of VEGF in the nervous system. Physiol. Rev. 89, 607–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Wu, Z. et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat. Med. 11, 959–965 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Girouard, H. & Iadecola, C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol. 100, 328–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Chrissobolis, S., Miller, A.A., Drummond, G.R., Kemp-Harper, B.K. & Sobey, C.G. Oxidative stress and endothelial dysfunction in cerebrovascular disease. Front. Biosci. 16, 1733–1745 (2011).

    Article  CAS  Google Scholar 

  41. Park, L. et al. Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-beta. Proc. Natl. Acad. Sci. USA 108, 5063–5068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stewart, C.R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Xu, J. et al. Amyloid beta peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J. Cereb. Blood Flow Metab. 21, 702–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Carrano, A. et al. Amyloid beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxid. Redox Signal. 15, 1167–1178 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Thomas, T., Thomas, G., McLendon, C., Sutton, T. & Mullan, M. β-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380, 168–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Chow, N. et al. Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype. Proc. Natl. Acad. Sci. USA 104, 823–828 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bell, R.D. et al. SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells. Nat. Cell Biol. 11, 143–153 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Hamilton, N.B., Attwell, D. & Hall, C.N. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenergetics 2, 5 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Peppiatt, C.M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bell, R.D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de la Torre, J.C. Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol. 3, 184–190 (2004).

    Article  PubMed  Google Scholar 

  52. Greenberg, S.M., Gurol, M.E., Rosand, J. & Smith, E.E. Amyloid angiopathy-related vascular cognitive impairment. Stroke 35, 2616–2619 (2004).

    Article  PubMed  Google Scholar 

  53. Quaegebeur, A. & Carmeliet, P. Oxygen sensing: a common crossroad in cancer and neurodegeneration. Curr. Top. Microbiol. Immunol. 345, 71–103 (2010).

    CAS  PubMed  Google Scholar 

  54. Liu, Y., Liu, F., Iqbal, K., Grundke-Iqbal, I. & Gong, C.X. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett. 582, 359–364 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soucek, T., Cumming, R., Dargusch, R., Maher, P. & Schubert, D. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 39, 43–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Grammas, P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer's disease. J. Neuroinflammation 8, 26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Merlini, M., Meyer, E.P., Ulmann-Schuler, A. & Nitsch, R.M. Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice. Acta Neuropathol. 122, 293–311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, X., Lu, F., Wang, J.Z. & Gong, C.X. Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur. J. Neurosci. 23, 2078–2086 (2006).

    Google Scholar 

  60. Cunnane, S. et al. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition 27, 3–20 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Leen, W.G. et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain 133, 655–670 (2010).

    Article  PubMed  Google Scholar 

  62. Pasinelli, P. & Brown, R.H. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710–723 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Sutedja, N.A. et al. Beneficial vascular risk profile is associated with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 82, 638–642 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Rule, R.R., Schuff, N., Miller, R.G. & Weiner, M.W. Gray matter perfusion correlates with disease severity in ALS. Neurology 74, 821–827 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kew, J.J. et al. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain 116, 655–680 (1993).

    Article  PubMed  Google Scholar 

  66. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Zhong, Z. et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat. Neurosci. 11, 420–422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nicaise, C. et al. Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res. 1301, 152–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Henkel, J.S., Beers, D.R., Wen, S., Bowser, R. & Appel, S.H. Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology 72, 1614–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Garbuzova-Davis, S. et al. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS ONE 2, e1205 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Candelario-Jalil, E. et al. Matrix metalloproteinases are associated with increased blood-brain barrier opening in vascular cognitive impairment. Stroke 42, 1345–1350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garbuzova-Davis, S. et al. Amyotrophic lateral sclerosis: A neurovascular disease. Brain Res. 1398, 113–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Derejko, M. et al. Regional cerebral blood flow in Parkinson's disease as an indicator of cognitive impairment. Nucl. Med. Commun. 27, 945–951 (2006).

    Article  PubMed  Google Scholar 

  74. Harris, G.J. et al. Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease. Brain 122, 1667–1678 (1999).

    Article  PubMed  Google Scholar 

  75. Storkebaum, E. et al. Impaired autonomic regulation of resistance arteries in mice with low vascular endothelial growth factor or upon vascular endothelial growth factor trap delivery. Circulation 122, 273–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Storkebaum, E. et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat. Neurosci. 8, 85–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15, 940–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lu, L. et al. Amyotrophic lateral sclerosis-linked mutant SOD1 sequesters Hu antigen R (HuR) and TIA-1-related protein (TIAR): implications for impaired post-transcriptional regulation of vascular endothelial growth factor. J. Biol. Chem. 284, 33989–33998 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lambrechts, D. et al. Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility in male carriers of the -2578AA genotype. J. Med. Genet. 46, 840–846 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Poesen, K. et al. Novel role for vascular endothelial growth factor (VEGF) receptor-1 and its ligand VEGF-B in motor neuron degeneration. J. Neurosci. 28, 10451–10459 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Greenway, M.J. et al. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis. Nat. Genet. 38, 411–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. van Blitterswijk, M. & Landers, J.E. RNA processing pathways in amyotrophic lateral sclerosis. Neurogenetics 11, 275–290 (2010).

    Article  PubMed  CAS  Google Scholar 

  83. Tesseur, I. & Wyss-Coray, T. A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models. Curr. Alzheimer Res. 3, 505–513 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Azzouz, M. et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429, 413–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Dodge, J.C. et al. AAV4-mediated expression of IGF-1 and VEGF within cellular components of the ventricular system improves survival outcome in familial ALS mice. Mol. Ther. 18, 2075–2084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, Y. et al. Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. J. Neurosci. 27, 304–307 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Xiong, N. et al. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson's disease. Gene Ther. 18, 394–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Emerich, D.F., Mooney, D.J., Storrie, H., Babu, R.S. & Kordower, J.H. Injectable hydrogels providing sustained delivery of vascular endothelial growth factor are neuroprotective in a rat model of Huntington's disease. Neurotox. Res. 17, 66–74 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Spuch, C. et al. The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer's disease. Biomaterials 31, 5608–5618 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Kieran, D. et al. Control of motoneuron survival by angiogenin. J. Neurosci. 28, 14056–14061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Deane, R. et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Town, T. et al. Blocking TGF-β–Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat. Med. 14, 681–687 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Whitehead, K.J. et al. The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat. Med. 15, 177–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bose, P., Holter, J.L. & Selby, G.B. Bevacizumab in hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 360, 2143–2144 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Oosting, S., Nagengast, W., deVries, E., Retornaz, F. & Duvoux, C. More on bevacizumab in hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 361, 931; author reply 931–932 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Lebrin, F. et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat. Med. 16, 420–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Sagare, A. et al. Clearance of amyloid-β by circulating lipoprotein receptors. Nat. Med. 13, 1029–1031 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Faurobert, E. & Albiges-Rizo, C. Recent insights into cerebral cavernous malformations: a complex jigsaw puzzle under construction. FEBS J. 277, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. He, Y. et al. Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci. Signal. 3, ra26 (2010).

    PubMed  PubMed Central  Google Scholar 

  100. Kalaria, R.N. Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr. Rev. 68 (suppl. 2) S74–S87 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Notebaert, A. Truyens and B. Sass for help with the figures. E.S. is a fellow of FWO-Flanders, funded by the state North Rhine Westphalia and supported by a grant from the Frick Foundation for ALS Research. A.Q. is a fellow of the Fund for Scientific Research (FWO), Flanders. M.V. is supported by grants from the Interuniversity Attraction Poles initiated by the Belgian Science Policy, Network 5/25, the F.R.S.-FNRS (Fonds de la Recherche Scientifique), and the ARC (Actions de Recherche Concertées-Communauté française de Belgique). P.C. is supported by Long-term structural Methusalem funding by the Flemish Government, the Fund for Scientific Research–Flemish Government (FWO) (G.0677.09, G.0676.09), the Belgian Science Policy (IUAP-P6/30), the Association Française contre les Myopathies (AFM), Geneeskundige stichting Koningin Elisabeth and Motor Neurone Disease Association grant 70/130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storkebaum, E., Quaegebeur, A., Vikkula, M. et al. Cerebrovascular disorders: molecular insights and therapeutic opportunities. Nat Neurosci 14, 1390–1397 (2011). https://doi.org/10.1038/nn.2947

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing