Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bidirectional plasticity of calcium-permeable AMPA receptors in oligodendrocyte lineage cells

This article has been updated

Abstract

Oligodendrocyte precursor cells (OPCs), a major glial cell type that gives rise to myelinating oligodendrocytes in the CNS, express calcium-permeable AMPA receptors (CP-AMPARs). Although CP-AMPARs are important for OPC proliferation and neuron-glia signaling, they render OPCs susceptible to ischemic damage in early development. We identified factors controlling the dynamic regulation of AMPAR subtypes in OPCs from rat optic nerve and mouse cerebellar cortex. We found that activation of group 1 mGluRs drove an increase in the proportion of CP-AMPARs, reflected by an increase in single-channel conductance and inward rectification. This plasticity required the elevation of intracellular calcium and used PI3K, PICK-1 and the JNK pathway. In white matter, neurons and astrocytes release both ATP and glutamate. Unexpectedly, activation of purinergic receptors in OPCs decreased CP-AMPAR expression, suggesting a capacity for homeostatic regulation. Finally, we found that stargazin-related transmembrane AMPAR regulatory proteins, which are critical for AMPAR surface expression in neurons, regulate CP-AMPAR plasticity in OPCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DHPG increases rectification of AMPARs in CG4 OPCs.
Figure 2: DHPG increases single-channel conductance of AMPARs in CG4 OPCs.
Figure 3: mGluR-induced AMPAR plasticity is developmentally regulated in native OPCs.
Figure 4: ATP reduces AMPAR rectification in native OPCs.
Figure 5: TARPs are expressed in OPCs.
Figure 6: TARPs control mGluR-induced AMPAR plasticity.
Figure 7: mGluR activation increases synaptic CP-AMPARs in cerebellar NG2-positive OPCs.

Similar content being viewed by others

Change history

  • 20 October 2011

    In the HTML version of this article initially published online, the name of one of the corresponding authors was incorrect. The error has been corrected for the HTML version of this article.

References

  1. Gallo, V. et al. Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor–mediated K+ channel block. J. Neurosci. 16, 2659–2670 (1996).

    Article  CAS  Google Scholar 

  2. Gudz, T.I., Komuro, H. & Macklin, W.B. Glutamate stimulates oligodendrocyte progenitor migration mediated via an alphav integrin/myelin proteolipid protein complex. J. Neurosci. 26, 2458–2466 (2006).

    Article  CAS  Google Scholar 

  3. Bergles, D.E., Roberts, J.D., Somogyi, P. & Jahr, C.E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000).

    Article  CAS  Google Scholar 

  4. Traynelis, S.F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  Google Scholar 

  5. Geiger, J.R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  Google Scholar 

  6. Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  Google Scholar 

  7. De Biase, L.M., Nishiyama, A. & Bergles, D.E. Excitability and synaptic communication within the oligodendrocyte lineage. J. Neurosci. 30, 3600–3611 (2010).

    Article  CAS  Google Scholar 

  8. Etxeberria, A., Mangin, J.-M., Aguirre, A. & Gallo, V. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat. Neurosci. 13, 287–289 (2010).

    Article  CAS  Google Scholar 

  9. Fern, R. & Moller, T. Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J. Neurosci. 20, 34–42 (2000).

    Article  CAS  Google Scholar 

  10. Follett, P.L., Rosenberg, P.A., Volpe, J.J. & Jensen, F.E. NBQX attenuates excitotoxic injury in developing white matter. J. Neurosci. 20, 9235–9241 (2000).

    Article  CAS  Google Scholar 

  11. Deng, W., Wang, H., Rosenberg, P.A., Volpe, J.J. & Jensen, F.E. Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc. Natl. Acad. Sci. USA 101, 7751–7756 (2004).

    Article  CAS  Google Scholar 

  12. Volpe, J.J. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J. Child Neurol. 24, 1085–1104 (2009).

    Article  Google Scholar 

  13. Kukley, M., Nishiyama, A. & Dietrich, D. The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J. Neurosci. 30, 8320–8331 (2010).

    Article  CAS  Google Scholar 

  14. Iino, M. et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292, 926–929 (2001).

    Article  CAS  Google Scholar 

  15. Liu, S.Q.J. & Cull-Candy, S.G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  Google Scholar 

  16. Ge, W.P. et al. Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors. Science 312, 1533–1537 (2006).

    Article  CAS  Google Scholar 

  17. Hamilton, N., Vayro, S., Wigley, R. & Butt, A.M. Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 58, 66–79 (2010).

    Article  Google Scholar 

  18. Domercq, M. et al. P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58, 730–740 (2010).

    PubMed  Google Scholar 

  19. Haberlandt, C. et al. Gray matter NG2 cells display multiple Ca2+-signaling pathways and highly motile processes. PLoS ONE 6, e17575 (2011).

    Article  CAS  Google Scholar 

  20. Kelly, L., Farrant, M. & Cull-Candy, S.G. Synaptic mGluR activation drives plasticity of calcium-permeable AMPA receptors. Nat. Neurosci. 12, 593–601 (2009).

    Article  CAS  Google Scholar 

  21. Soto, D., Coombs, I.D., Kelly, L., Farrant, M. & Cull-Candy, S.G. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat. Neurosci. 10, 1260–1267 (2007).

    Article  CAS  Google Scholar 

  22. Swanson, G.T., Kamboj, S.K. & Cull-Candy, S.G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69 (1997).

    Article  CAS  Google Scholar 

  23. Mameli, M., Balland, B., Lujan, R. & Luscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007).

    Article  CAS  Google Scholar 

  24. Luyt, K., Varadi, A. & Molnar, E. Functional metabotropic glutamate receptors are expressed in oligodendrocyte progenitor cells. J. Neurochem. 84, 1452–1464 (2003).

    Article  CAS  Google Scholar 

  25. Jo, J. et al. Metabotropic glutamate receptor–mediated LTD involves two interacting Ca2+ sensors, NCS-1 and PICK1. Neuron 60, 1095–1111 (2008).

    Article  CAS  Google Scholar 

  26. Ahn, S.M. & Choe, E.S. Alterations in GluR2 AMPA receptor phosphorylation at serine 880 following group I metabotropic glutamate receptor stimulation in the rat dorsal striatum. J. Neurosci. Res. 88, 992–999 (2010).

    CAS  PubMed  Google Scholar 

  27. Li, X.M. et al. JNK1 contributes to metabotropic glutamate receptor–dependent long-term depression and short-term synaptic plasticity in the mice area hippocampal CA1. Eur. J. Neurosci. 25, 391–396 (2007).

    Article  Google Scholar 

  28. Barres, B.A., Lazar, M.A. & Raff, M.C. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120, 1097–1108 (1994).

    CAS  Google Scholar 

  29. Wyllie, D.J., Mathie, A., Symonds, C.J. & Cull-Candy, S.G. Activation of glutamate receptors and glutamate uptake in identified macroglial cells in rat cerebellar cultures. J. Physiol. (Lond.) 432, 235–258 (1991).

    Article  CAS  Google Scholar 

  30. Ziskin, J.L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D.E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 10, 321–330 (2007).

    Article  CAS  Google Scholar 

  31. James, G. & Butt, A.M. P2X and P2Y purinoreceptors mediate ATP-evoked calcium signaling in optic nerve glia in situ. Cell Calcium 30, 251–259 (2001).

    Article  CAS  Google Scholar 

  32. Pankratov, Y.V., Lalo, U.V. & Krishtal, O.A. Role for P2X receptors in long-term potentiation. J. Neurosci. 22, 8363–8369 (2002).

    Article  CAS  Google Scholar 

  33. Rouach, N. et al. TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat. Neurosci. 8, 1525–1533 (2005).

    Article  CAS  Google Scholar 

  34. Tomita, S., Stein, V., Stocker, T.J., Nicoll, R.A. & Bredt, D.S. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45, 269–277 (2005).

    Article  CAS  Google Scholar 

  35. Fukaya, M., Yamazaki, M., Sakimura, K. & Watanabe, M. Spatial diversity in gene expression for VDCCγ subunit family in developing and adult mouse brains. Neurosci. Res. 53, 376–383 (2005).

    Article  CAS  Google Scholar 

  36. Tomita, S. et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J. Cell Biol. 161, 805–816 (2003).

    Article  CAS  Google Scholar 

  37. Soto, D. et al. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, γ-5. Nat. Neurosci. 12, 277–285 (2009).

    Article  CAS  Google Scholar 

  38. Shi, Y., Lu, W., Milstein, A.D. & Nicoll, R.A. The stoichiometry of AMPA receptors and TARPs varies by neuronal cell type. Neuron 62, 633–640 (2009).

    Article  CAS  Google Scholar 

  39. Yamazaki, M. et al. TARPs γ-2 and γ-7 are essential for AMPA receptor expression in the cerebellum. Eur. J. Neurosci. 31, 2204–2220 (2010).

    Article  Google Scholar 

  40. Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    Article  CAS  Google Scholar 

  41. Lin, S.C. et al. Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron 46, 773–785 (2005).

    Article  CAS  Google Scholar 

  42. Pende, M., Holtzclaw, L.A., Curtis, J.L., Russell, J.T. & Gallo, V. Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc. Natl. Acad. Sci. USA 91, 3215–3219 (1994).

    Article  CAS  Google Scholar 

  43. Ishibashi, T. et al. Astrocytes promote myelination in response to electrical impulses. Neuron 49, 823–832 (2006).

    Article  CAS  Google Scholar 

  44. Stevens, B., Porta, S., Haak, L.L., Gallo, V. & Fields, R.D. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36, 855–868 (2002).

    Article  CAS  Google Scholar 

  45. Man, H.Y. et al. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 38, 611–624 (2003).

    Article  CAS  Google Scholar 

  46. Clem, R.L., Anggono, V. & Huganir, R.L. PICK1 regulates incorporation of calcium-permeable AMPA receptors during cortical synaptic strengthening. J. Neurosci. 30, 6360–6366 (2010).

    Article  CAS  Google Scholar 

  47. Thomas, G.M., Lin, D.T., Nuriya, M. & Huganir, R.L. Rapid and bi-directional regulation of AMPA receptor phosphorylation and trafficking by JNK. EMBO J. 27, 361–372 (2008).

    Article  CAS  Google Scholar 

  48. Borsello, T. et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat. Med. 9, 1180–1186 (2003).

    Article  CAS  Google Scholar 

  49. Vieira, M. et al. Excitotoxicity through Ca2+-permeable AMPA receptors requires Ca2+-dependent JNK activation. Neurobiol. Dis. 40, 645–655 (2010).

    Article  CAS  Google Scholar 

  50. Santos, A.E. et al. Excitotoxicity mediated by Ca2+-permeable GluR4-containing AMPA receptors involves the AP-1 transcription factor. Cell Death Differ. 13, 652–660 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Coombs, C. Bats, C. Shelley, D. Soto and D. Studniarczyk for invaluable help and discussion. We are grateful to E. Molnar (Bristol University) for CG4-OPC cells, D. Attwell and C. Reynell (University College London) for providing NG2-DsRed mice, R. Nicoll (University of California, San Francisco) for TARP cDNA (rat, γ-2), J. Wood (University College London) for GFP-PICK-1 inhibitor peptide, M. Watanabe (Hokkaido University) for antibody to TARP γ-2, B. Clark (University College London) for antibody to calbindin, and D. Cutler and M. Marsh (Laboratory for Molecular Cell Biology, University College London) for generous help and access to equipment. This work was supported by a Wellcome Trust Programme grant (S.G.C.-C. and M.F.). M.Z. was in receipt of a Medical Research Council (Laboratory for Molecular Cell Biology, University College London) studentship.

Author information

Authors and Affiliations

Authors

Contributions

M.Z. performed electrophysiology and molecular experiments on cultured cells. M.R. and M.Z. performed slice recordings. M.F. and M.Z. analyzed the data. All of the authors contributed to the design and interpretation of experiments. S.G.C.-C. and M.F. supervised the project. M.Z., M.F. and S.G.C.-C. wrote the paper.

Corresponding authors

Correspondence to Mark Farrant or Stuart G Cull-Candy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 572 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zonouzi, M., Renzi, M., Farrant, M. et al. Bidirectional plasticity of calcium-permeable AMPA receptors in oligodendrocyte lineage cells. Nat Neurosci 14, 1430–1438 (2011). https://doi.org/10.1038/nn.2942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing