Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors

Abstract

Neurotransmitter transporters can affect neuronal excitability indirectly via modulation of neurotransmitter concentrations or directly via transporter currents. A physiological or pathophysiological role for transporter currents has not been described. We found that GABA transporter 1 (GAT-1) cation currents directly increased GABAergic neuronal excitability and synaptic GABA release in the periaqueductal gray (PAG) during opioid withdrawal in rodents. In contrast, GAT-1 did not indirectly alter GABA receptor responses via modulation of extracellular GABA concentrations. Notably, we found that GAT-1–induced increases in GABAergic activity contributed to many PAG-mediated signs of opioid withdrawal. Together, these data support the hypothesis that GAT-1 activity directly produces opioid withdrawal signs through direct hyperexcitation of GABAergic PAG neurons and nerve terminals, which presumably enhances GABAergic inhibition of PAG output neurons. These data provide, to the best of our knowledge, the first evidence that dysregulation of a neurotransmitter transporter current is important for the maladaptive plasticity that underlies opiate withdrawal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GAT-1 inhibition reduced GABAergic PAG neuron excitability in vivo.
Figure 2: GAT-1 drives the withdrawal-induced increase in GABA release.
Figure 3: GAT-1 inhibition reduces the withdrawal-induced increase in extracellular GABA concentration.
Figure 4: GAT-1 activity in the PAG is important for expression of opioid withdrawal.

Similar content being viewed by others

References

  1. Veruki, M.L., Morkve, S.H. & Hartveit, E. Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat. Neurosci. 9, 1388–1396 (2006).

    Article  CAS  Google Scholar 

  2. Bagley, E.E., Gerke, M.B., Vaughan, C.W., Hack, S.P. & Christie, M.J. GABA transporter currents activated by protein kinase A excite midbrain neurons during opioid withdrawal. Neuron 45, 433–445 (2005).

    Article  CAS  Google Scholar 

  3. Ingram, S.L., Prasad, B.M. & Amara, S.G. Dopamine transporter–mediated conductances increase excitability of midbrain dopamine neurons. Nat. Neurosci. 5, 971–978 (2002).

    Article  CAS  Google Scholar 

  4. Mann, J.J. The medical management of depression. N. Engl. J. Med. 353, 1819–1834 (2005).

    Article  CAS  Google Scholar 

  5. Cushman, P. & Dole, V.P. Detoxification of rehabilitated methadone-maintained patients. J. Am. Med. Assoc. 226, 747–752 (1973).

    Article  CAS  Google Scholar 

  6. Bozarth, M.A. & Wise, R.A. Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science 224, 516–517 (1984).

    Article  CAS  Google Scholar 

  7. Laschka, E., Teschemacher, H., Mehraein, P. & Herz, A. Sites of action of morphine involved in the development of physical dependence in rats. II. Morphine withdrawal precipitated by application of morphine antagonists into restricted parts of the ventricular system and by microinjection into various brain areas. Psychopharmacologia 46, 141–147 (1976).

    Article  CAS  Google Scholar 

  8. Williams, J.T., Christie, M.J. & Manzoni, O. Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 81, 299–343 (2001).

    Article  CAS  Google Scholar 

  9. Chieng, B. & Christie, M.J. Local opioid withdrawal in rat single periaqueductal gray neurons in vitro. J. Neurosci. 16, 7128–7136 (1996).

    Article  CAS  Google Scholar 

  10. Ingram, S.L., Vaughan, C.W., Bagley, E.E., Connor, M. & Christie, M.J. Enhanced opioid efficacy in opioid dependence is caused by an altered signal transduction pathway. J. Neurosci. 18, 10269–10276 (1998).

    Article  CAS  Google Scholar 

  11. Chieng, B.C., Hallberg, C., Nyberg, F.J. & Christie, M.J. Enhanced c-Fos in periaqueductal grey GABAergic neurons during opioid withdrawal. Neuroreport 16, 1279–1283 (2005).

    Article  CAS  Google Scholar 

  12. Hacker, J., Pedersen, N.P., Chieng, B.C., Keay, K.A. & Christie, M.J. Enhanced Fos expression in glutamic acid decarboxylase immunoreactive neurons of the mouse periaqueductal grey during opioid withdrawal. Neuroscience 137, 1389–1396 (2006).

    Article  CAS  Google Scholar 

  13. Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60–79 (2003).

    Article  CAS  Google Scholar 

  14. Cherubini, E. & Conti, F. Generating diversity at GABAergic synapses. Trends Neurosci. 24, 155–162 (2001).

    Article  CAS  Google Scholar 

  15. Barbaresi, P., Gazzanelli, G. & Malatesta, M. γ-Aminobutyric acid transporters in the cat periaqueductal gray: a light and electron microscopic immunocytochemical study. J. Comp. Neurol. 429, 337–354 (2001).

    Article  CAS  Google Scholar 

  16. Hack, S.P., Vaughan, C.W. & Christie, M.J. Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro. Neuropharmacology 45, 575–584 (2003).

    Article  CAS  Google Scholar 

  17. Jensen, K., Chiu, C.S., Sokolova, I., Lester, H.A. & Mody, I. GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J. Neurophysiol. 90, 2690–2701 (2003).

    Article  CAS  Google Scholar 

  18. Vaughan, C.W., Ingram, S.L., Connor, M.A. & Christie, M.J. How opioids inhibit GABA-mediated neurotransmission. Nature 390, 611–614 (1997).

    Article  CAS  Google Scholar 

  19. Kullmann, D.M. et al. Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog. Biophys. Mol. Biol. 87, 33–46 (2005).

    Article  CAS  Google Scholar 

  20. Chiu, C.S. et al. GABA transporter deficiency causes tremor, ataxia, nervousness and increased GABA-induced tonic conductance in cerebellum. J. Neurosci. 25, 3234–3245 (2005).

    Article  CAS  Google Scholar 

  21. Koob, G.F., Maldonado, R. & Stinus, L. Neural substrates of opiate withdrawal. Trends Neurosci. 15, 186–191 (1992).

    Article  CAS  Google Scholar 

  22. DiStefano, P.S. & Brown, O.M. Biochemical correlates of morphine withdrawal. 2. Effects of clonidine. J. Pharmacol. Exp. Ther. 233, 339–344 (1985).

    CAS  PubMed  Google Scholar 

  23. Itouji, A., Sakai, N., Tanaka, C. & Saito, N. Neuronal and glial localization of two GABA transporters (GAT1 and GAT3) in the rat cerebellum. Brain Res. Mol. Brain Res. 37, 309–316 (1996).

    Article  CAS  Google Scholar 

  24. Overstreet, L.S. & Westbrook, G. Synapse density regulates independence at unitary inhibitory synapses. J. Neurosci. 23, 2618–2626 (2003).

    Article  CAS  Google Scholar 

  25. Belelli, D. et al. Extrasynaptic GABAA receptors: form, pharmacology and function. J. Neurosci. 29, 12757–12763 (2009).

    Article  CAS  Google Scholar 

  26. Yang, K., Furue, H., Kumamoto, E., Dong, Y.X. & Yoshimura, M. Pre- and postsynaptic inhibition mediated by GABAB receptors in rat ventrolateral periaqueductal gray neurons. Biochem. Biophys. Res. Commun. 302, 233–237 (2003).

    Article  CAS  Google Scholar 

  27. Luer, M.S. & Rhoney, D.H. Tiagabine: a novel antiepileptic drug. Ann. Pharmacother. 32, 1173–1180 (1998).

    Article  CAS  Google Scholar 

  28. González, G. et al. Clinical efficacy of gabapentin versus tiagabine for reducing cocaine use among cocaine-dependent methadone-treated patients. Drug Alcohol Depend. 87, 1–9 (2007).

    Article  Google Scholar 

  29. Minozzi, S. et al. Anticonvulsants for cocaine dependence. Cochrane Database Syst. Rev. 16, CD006754 (2008).

    Google Scholar 

  30. Sofuoglu, M., Mouratidis, M., Yoo, S., Culligan, K. & Kosten, T. Effects of tiagabine in combination with intravenous nicotine in overnight abstinent smokers. Psychopharmacology (Berl.) 181, 504–510 (2005).

    Article  CAS  Google Scholar 

  31. Myrick, H. et al. A retrospective chart review comparing tiagabine and benzodiazepines for the treatment of alcohol withdrawal. J. Psychoactive Drugs 37, 409–414 (2005).

    Article  Google Scholar 

  32. Nestler, E.J. Historical review: molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol. Sci. 25, 210–218 (2004).

    Article  CAS  Google Scholar 

  33. Hanoune, J. & Defer, N. Regulation and role of adenylyl cyclase isoforms. Annu. Rev. Pharmacol. Toxicol. 41, 145–174 (2001).

    Article  CAS  Google Scholar 

  34. Tzavara, E.T., Monory, K., Hanoune, J. & Nomikos, G.G. Nicotine withdrawal syndrome: behavioral distress and selective up-regulation of the cyclic AMP pathway in the amygdala. Eur. J. Neurosci. 16, 149–153 (2002).

    Article  Google Scholar 

  35. Chieng, B. & Williams, J.T. Increased opioid inhibition of GABA release in nucleus accumbens during morphine withdrawal. J. Neurosci. 18, 7033–7039 (1998).

    Article  CAS  Google Scholar 

  36. Bonci, A. & Williams, J.T. Increased probability of GABA release during withdrawal from morphine. J. Neurosci. 17, 796–803 (1997).

    Article  CAS  Google Scholar 

  37. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Co-ordinates, 2nd edn. (Academic Press, Sydney, 2001).

  38. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Co-ordinates, 4thedn. (Academic Press, Sydney, 1998).

  39. Chefer, V.I., Denoroy, L., Zapata, A. & Shippenberg, T.S. Mu opioid receptor modulation of somatodendritic dopamine overflow: GABAergic and glutamatergic mechanisms. Eur. J. Neurosci. 30, 272–278 (2009).

    Article  CAS  Google Scholar 

  40. McNally, G.P., Pigg, M. & Weidemann, G. Opioid receptors in the midbrain periaqueductal gray regulate extinction of pavlovian fear conditioning. J. Neurosci. 24, 6912–6919 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Azriel for preparing the image shown in Figure 1a, and T. Kaneko (Kyoto University) for donating Gad67-GFP mice. This work was supported by the National Health and Medical Research Council of Australia and the National Institute on Drug Abuse Intramural Research Program of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

E.E.B. designed and performed all of the electrophysiological experiments, with the exception of some of the IPSC experiments, contributed to research design and prepared the manuscript, with contributions from all of the other authors. C.M. performed and analyzed some of the IPSC experiments. J.H. and J.P. performed immunohistochemical and behavioral studies under the supervision and with the direct assistance of B.C.H.C., M.J.C. and G.P.M. G.P.M. also performed and supervised the microinjection studies. V.I.C. and T.S.S. designed and performed all of the microdialysis experiments. M.J.C. contributed to experimental design, supervision, coordinated experimental approaches and preparation of the manuscript.

Corresponding author

Correspondence to MacDonald J Christie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 567 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagley, E., Hacker, J., Chefer, V. et al. Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors. Nat Neurosci 14, 1548–1554 (2011). https://doi.org/10.1038/nn.2940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing