Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Medial prefrontal cortex as an action-outcome predictor

Abstract

The medial prefrontal cortex (mPFC) and especially anterior cingulate cortex is central to higher cognitive function and many clinical disorders, yet its basic function remains in dispute. Various competing theories of mPFC have treated effects of errors, conflict, error likelihood, volatility and reward, using findings from neuroimaging and neurophysiology in humans and monkeys. No single theory has been able to reconcile and account for the variety of findings. Here we show that a simple model based on standard learning rules can simulate and unify an unprecedented range of known effects in mPFC. The model reinterprets many known effects and suggests a new view of mPFC, as a region concerned with learning and predicting the likely outcomes of actions, whether good or bad. Cognitive control at the neural level is then seen as a result of evaluating the probable and actual outcomes of one's actions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PRO model.
Figure 2: ERP simulations.
Figure 3: Single-unit neurophysiology simulation.
Figure 4: fMRI simulations.

Similar content being viewed by others

References

  1. Carter, C.S., MacDonald, A.W. III, Ross, L.L. & Stenger, V.A. Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. Am. J. Psychiatry 158, 1423–1428 (2001).

    Article  CAS  Google Scholar 

  2. Gehring, W.J., Coles, M.G.H., Meyer, D.E. & Donchin, E. The error-related negativity: An event-related potential accompanying errors. Psychophysiology 27, S34 (1990).

    Article  Google Scholar 

  3. Falkenstein, M., Hohnsbein, J., Hoorman, J. & Blanke, L. Effects of crossmodal divided attention on late ERP components: II. Error processing in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol. 78, 447–455 (1991).

    Article  CAS  Google Scholar 

  4. Carter, C.S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).

    Article  CAS  Google Scholar 

  5. Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S. & Cohen, J.C. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  CAS  Google Scholar 

  6. Olson, C.R. & Gettner, S.N. Neuronal activity related to rule and conflict in macaque supplementary eye field. Physiol. Behav. 77, 663–670 (2002).

    Article  CAS  Google Scholar 

  7. Ito, S., Stuphorn, V., Brown, J. & Schall, J.D. Performance monitoring by anterior cingulate cortex during saccade countermanding. Science 302, 120–122 (2003).

    Article  CAS  Google Scholar 

  8. Shima, K. & Tanji, J. Role of cingulate motor area cells in voluntary movement selection based on reward. Science 282, 1335–1338 (1998).

    Article  CAS  Google Scholar 

  9. Matsumoto, K., Suzuki, W. & Tanaka, K. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301, 229–232 (2003).

    Article  CAS  Google Scholar 

  10. Matsumoto, M., Matsumoto, K., Abe, H. & Tanaka, K. Medial prefrontal cell activity signaling prediction errors of action values. Nat. Neurosci. 10, 647–656 (2007).

    Article  CAS  Google Scholar 

  11. Amiez, C., Joseph, J.P. & Procyk, E. Anterior cingulate error-related activity is modulated by predicted reward. Eur. J. Neurosci. 21, 3447–3452 (2005).

    Article  Google Scholar 

  12. Scheffers, M.K. & Coles, M.G. Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors. J. Exp. Psychol. Hum. Percept. Perform. 26, 141–151 (2000).

    Article  Google Scholar 

  13. Holroyd, C.B. & Coles, M.G. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709 (2002).

    Article  Google Scholar 

  14. Brown, J.W. & Braver, T.S. Risk prediction and aversion by anterior cingulate cortex. Cogn. Affect. Behav. Neurosci. 7, 266–277 (2007).

    Article  Google Scholar 

  15. Brown, J.W. & Braver, T.S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307, 1118–1121 (2005).

    Article  CAS  Google Scholar 

  16. Behrens, T.E., Woolrich, M.W., Walton, M.E. & Rushworth, M.F. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  Google Scholar 

  17. Walton, M.E., Devlin, J.T. & Rushworth, M.F. Interactions between decision making and performance monitoring within prefrontal cortex. Nat. Neurosci. 7, 1259–1265 (2004).

    Article  CAS  Google Scholar 

  18. Rudebeck, P.H. et al. Frontal cortex subregions play distinct roles in choices between actions and stimuli. J. Neurosci. 28, 13775–13785 (2008).

    Article  CAS  Google Scholar 

  19. Cole, M.W., Yeung, N., Freiwald, W.A. & Botvinick, M. Cingulate cortex: diverging data from humans and monkeys. Trends Neurosci. 32, 566–574 (2009).

    Article  CAS  Google Scholar 

  20. Ford, K.A., Gati, J.S., Menon, R.S. & Everling, S. BOLD fMRI activation for anti-saccades in nonhuman primates. Neuroimage 45, 470–476 (2009).

    Article  Google Scholar 

  21. Haggard, P. Human volition: towards a neuroscience of will. Nat. Rev. Neurosci. 9, 934–946 (2008).

    Article  CAS  Google Scholar 

  22. Aarts, E., Roelofs, A. & van Turennout, M. Anticipatory activity in anterior cingulate cortex can be independent of conflict and error likelihood. J. Neurosci. 28, 4671–4678 (2008).

    Article  CAS  Google Scholar 

  23. Brown, J.W. Conflict effects without conflict in anterior cingulate cortex: multiple response effects and context specific representations. Neuroimage 47, 334–341 (2009).

    Article  Google Scholar 

  24. Kennerley, S.W., Dahmubed, A.F., Lara, A.H. & Wallis, J.D. Neurons in the frontal lobe encode the value of multiple decision variables. J. Cogn. Neurosci. 21, 1162–1178 (2009).

    Article  Google Scholar 

  25. Croxson, P.L., Walton, M.E., O'Reilly, J.X., Behrens, T.E. & Rushworth, M.F. Effort-based cost-benefit valuation and the human brain. J. Neurosci. 29, 4531–4541 (2009).

    Article  CAS  Google Scholar 

  26. Schoenbaum, G., Setlow, B., Saddoris, M.P. & Gallagher, M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39, 855–867 (2003).

    Article  CAS  Google Scholar 

  27. Sallet, J. et al. Expectations, gains, and losses in the anterior cingulate cortex. Cogn. Affect. Behav. Neurosci. 7, 327–336 (2007).

    Article  Google Scholar 

  28. Amador, N., Schlag-Rey, M. & Schlag, J. Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. J. Neurophysiol. 84, 2166–2170 (2000).

    Article  CAS  Google Scholar 

  29. Nee, D.E., Kastner, S. & Brown, J.W. Functional heterogeneity of conflict, error, task-switching, and unexpectedness effects within medial prefrontal cortex. Neuroimage 54, 528–540 (2011).

    Article  Google Scholar 

  30. Procyk, E., Tanaka, Y.L. & Joseph, J.P. Anterior cingulate activity during routine and non-routine sequential behaviors in macaques. Nat. Neurosci. 3, 502–508 (2000).

    Article  CAS  Google Scholar 

  31. Holroyd, C.B. & Krigolson, O.E. Reward prediction error signals associated with a modified time estimation task. Psychophysiology 44, 913–917 (2007).

    Article  Google Scholar 

  32. Miltner, W.H.R., Braun, C.H. & Coles, M.G.H. Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a 'generic' neural system for error-detection. J. Cogn. Neurosci. 9, 788–798 (1997).

    Article  CAS  Google Scholar 

  33. Yeung, N. & Nieuwenhuis, S. Dissociating response conflict and error likelihood in anterior cingulate cortex. J. Neurosci. 29, 14506–14510 (2009).

    Article  CAS  Google Scholar 

  34. Burle, B., Roger, C., Allain, S., Vidal, F. & Hasbroucq, T. Error negativity does not reflect conflict: a reappraisal of conflict monitoring and anterior cingulate cortex activity. J. Cogn. Neurosci. 20, 1637–1655 (2008).

    Article  Google Scholar 

  35. Amiez, C., Joseph, J.P. & Procyk, E. Reward encoding in the monkey anterior cingulate cortex. Cereb. Cortex 16, 1040–1055 (2006).

    Article  CAS  Google Scholar 

  36. Quilodran, R., Rothe, M. & Procyk, E. Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron 57, 314–325 (2008).

    Article  CAS  Google Scholar 

  37. Brown, J.W. Multiple cognitive control effects of error likelihood and conflict. Psychol. Res. 73, 744–750 (2009).

    Article  Google Scholar 

  38. Nakamura, K., Roesch, M.R. & Olson, C.R. Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. J. Neurophysiol. 93, 884–908 (2005).

    Article  Google Scholar 

  39. Oliveira, F.T., McDonald, J.J. & Goodman, D. Performance monitoring in the anterior cingulate is not all error related: expectancy deviation and the representation of action-outcome associations. J. Cogn. Neurosci. 19, 1994–2004 (2007).

    Article  Google Scholar 

  40. Jessup, R.K., Busemeyer, J.R. & Brown, J.W. Error effects in anterior cingulate cortex reverse when error likelihood is high. J. Neurosci. 30, 3467–3472 (2010).

    Article  CAS  Google Scholar 

  41. Shidara, M. & Richmond, B.J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709–1711 (2002).

    Article  Google Scholar 

  42. Braver, T.S., Gray, J.R. & Burgess, G.C. Explaining the many varieties of working memory variation: dual mechanisms of cognitive control. in Variation of Working Memory (eds. Conway, C.J.A., Kane, M., Miyake, A. & Towse, J.) 76–106 (Oxford University Press, 2007).

  43. Yu, A.J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).

    Article  CAS  Google Scholar 

  44. Holroyd, C.B., Yeung, N., Coles, M.G. & Cohen, J.D. A mechanism for error detection in speeded response time tasks. J. Exp. Psychol. Gen. 134, 163–191 (2005).

    Article  Google Scholar 

  45. Singh, S.P. & Sutton, R.S. Reinforcement learning with replacing eligibility traces. Mach. Learn. 22, 123–158 (1996).

    Google Scholar 

  46. Watkins, C.J.C.H. & Dayan, P. Q-learning. Mach. Learn. 8, 279–292 (1992).

    Google Scholar 

  47. Doya, K., Samejima, K., Katagiri, K.-i. & Kawato, M. Multiple Model-Based Reinforcement Learning. Neural Comput. 14, 1347–1369 (2002).

    Article  Google Scholar 

  48. Gläscher, J., Daw, N., Dayan, P. & O'Doherty, J.P. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66, 585–595 (2010).

    Article  Google Scholar 

  49. Pearce, J.M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    Article  CAS  Google Scholar 

  50. Bush, G. et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc. Natl. Acad. Sci. USA 99, 523–528 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Pessoa, S. Padmala, T. Braver, V. Stuphorn, A. Krawitz, D. Nee and the J. Schall laboratory for critical feedback. Supported in part by Air Force Office of Scientific Research FA9550-07-1-0454 (J.W.B.), R03 DA023462 (J.W.B.), R01 DA026457 (J.W.B.), a NARSAD Young Investigator Award (J.W.B.) and the Sidney R. Baer Jr. Foundation (J.W.B.). Supported by the Intelligence Advanced Research Projects Activity (IARPA) through Department of the Interior (DOI) contract D10PC20023. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DOI or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

J.W.B. and W.H.A. conceptualized the model. W.H.A. implemented the model and ran the simulations. J.W.B. and W.H.A. wrote the manuscript.

Corresponding author

Correspondence to Joshua W Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1, Supplementary Note and Supplementary Discussion (PDF 231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, W., Brown, J. Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci 14, 1338–1344 (2011). https://doi.org/10.1038/nn.2921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing