Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles

Abstract

The thalamic reticular nucleus (TRN) is hypothesized to regulate neocortical rhythms and behavioral states. Using optogenetics and multi-electrode recording in behaving mice, we found that brief selective drive of TRN switched the thalamocortical firing mode from tonic to bursting and generated state-dependent neocortical spindles. These findings provide causal support for the involvement of the TRN in state regulation in vivo and introduce a new model for addressing the role of this structure in behavior.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optical drive of TRN generates thalamocortical burst firing.
Figure 2: Optical drive of TRN generates neocortical spindle oscillations.

References

  1. 1

    Sherman, S.M. Nat. Neurosci. 4, 344–346 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Steriade, M. Nat. Neurosci. 4, 671 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Lesica, N.A. et al. PLoS Biol. 4, e209 (2006).

    Article  Google Scholar 

  4. 4

    McCormick, D.A. & Bal, T. Annu. Rev. Neurosci. 20, 185–215 (1997).

    CAS  Article  Google Scholar 

  5. 5

    McAlonan, K., Cavanaugh, J. & Wurtz, R.H. Nature 456, 391–394 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Espinosa, F., Torres-Vega, M.A., Marks, G.A. & Joho, R.H. J. Neurosci. 28, 5570–5581 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Steriade, M., Domich, L., Oakson, G. & Deschenes, M. J. Neurophysiol. 57, 260–273 (1987).

    CAS  Article  Google Scholar 

  8. 8

    Dang-Vu, T.T., McKinney, S.M., Buxton, O.M., Solet, J.M. & Ellenbogen, J.M. Curr. Biol. 20, R626–R627 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Sirota, A., Csicsvari, J., Buhl, D. & Buzsaki, G. Proc. Natl. Acad. Sci. USA 100, 2065–2069 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Sohal, V.S., Pangratz-Fuehrer, S., Rudolph, U. & Huguenard, J.R. J. Neurosci. 26, 4247–4255 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Bezdudnaya, T. et al. Neuron 49, 421–432 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Contreras, D., Destexhe, A., Sejnowski, T.J. & Steriade, M. J. Neurosci. 17, 1179–1196 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Nir, Y. et al. Neuron 70, 153–169 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Li, B., Funke, K., Worgotter, F. & Eysel, U.T. J. Physiol. (Lond.) 514, 857–874 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Ferrarelli, F. et al. Am. J. Psychiatry 167, 1339–1348 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a US National Institutes of Health award (R01 NS045130-05) to C.I.M.

Author information

Affiliations

Authors

Contributions

M.H., J.S. and C.I.M. designed the experiments and analyses. M.H. and J.S. conducted the experiments and analyses. J.T. and G.F. developed the transgenic model. J.S. and J.R. developed the optics-integrated chronic implants. M.H., J.S. and C.I.M. wrote the manuscript. C.I.M. supervised the project.

Corresponding authors

Correspondence to Guoping Feng or Christopher I Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Materials and Methods (PDF 350 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Halassa, M., Siegle, J., Ritt, J. et al. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat Neurosci 14, 1118–1120 (2011). https://doi.org/10.1038/nn.2880

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing