Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mammalian Gcm genes induce Hes5 expression by active DNA demethylation and induce neural stem cells

Abstract

Signaling mediated by Notch receptors is crucial for the development of many organs and the maintenance of various stem cell populations. The activation of Notch signaling is first detectable by the expression of an effector gene, Hes5, in the neuroepithelium of mouse embryos at embryonic day (E) 8.0–8.5, and this activation is indispensable for the generation of neural stem cells. However, the molecular mechanism by which Hes5 expression is initiated in stem-producing cells remains unknown. We found that mammalian Gcm1 and Gcm2 (glial cells missing 1 and 2) are involved in the epigenetic regulation of Hes5 transcription by DNA demethylation independently of DNA replication. Loss of both Gcm genes and subsequent lack of Hes5 upregulation in the neuroepithelium of E7.5–8.5 Gcm1−/−; Gcm2−/− mice resulted in the impaired induction of neural stem cells. Our data suggest that Hes5 expression is serially activated first by Gcms and later by the canonical Notch pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA methylation in the Hes5 promoter.
Figure 2: Gcms are responsible for the demethylation of the Hes5 promoter.
Figure 3: Gcms are indispensable for Hes5 induction and neural stem cell generation.
Figure 4: Abnormal neural development in Gcm2 null mutants.
Figure 5: Gcms induce Hes5 expression in embryonic brains.
Figure 6: Gcms demethylate mitotically inactive DNA and methylated plasmids.
Figure 7: Active demethylation by Gcms in vivo.

Similar content being viewed by others

References

  1. Reynolds, B.A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hitoshi, S. et al. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev. 18, 1806–1811 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakamura, Y. et al. The bHLH gene Hes1 as a repressor of the neuronal commitment of CNS stem cells. J. Neurosci. 20, 283–293 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16, 846–858 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. de la Pompa, J.L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148 (1997).

    CAS  PubMed  Google Scholar 

  8. Donoviel, D.B. et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801–2810 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hosoya, T., Takizawa, K., Nitta, K. & Hotta, Y. glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82, 1025–1036 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Jones, B.W., Fetter, R.D., Tear, G. & Goodman, C.S. glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82, 1013–1023 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Jones, B.W. Transcriptional control of glial cell development in Drosophila. Dev. Biol. 278, 265–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Akiyama, Y., Hosoya, T., Poole, A.M. & Hotta, Y. The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. Proc. Natl. Acad. Sci. USA 93, 14912–14916 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schreiber, J., Sock, E. & Wegner, M. The regulator of early gliogenesis glial cells missing is a transcription factor with a novel type of DNA-binding domain. Proc. Natl. Acad. Sci. USA 94, 4739–4744 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Egger, B. et al. Gliogenesis in Drosophila: genome-wide analysis of downstream genes of glial cells missing in the embryonic nervous system. Development 129, 3295–3309 (2002).

    CAS  PubMed  Google Scholar 

  15. Kim, J. et al. Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc. Natl. Acad. Sci. USA 95, 12364–12369 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Günther, T. et al. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406, 199–203 (2000).

    Article  PubMed  Google Scholar 

  17. Schreiber, J., Enderich, J. & Wegner, M. Structural requirement for DNA binding of GCM proteins. Nucleic Acids Res. 26, 2337–2343 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schreiber, J. et al. Placental failure in mice lacking the mammalian homolog of glial cells missing, GCMa. Mol. Cell. Biol. 20, 2466–2474 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hatakeyama, J. et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Martens, D.J., Tropepe, V. & van der Kooy, D. Separate proliferation kinetics of fibroblast growth factor–responsive and epidermal growth factor–responsive neural stem cells within the embryonic forebrain germinal zone. J. Neurosci. 20, 1085–1095 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolffe, A.P., Jones, P.L. & Wade, P.A. DNA demethylation. Proc. Natl. Acad. Sci. USA 96, 5894–5896 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, J.-K. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43, 143–166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Waga, S. & Stillman, B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721–751 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Bruniquel, D. & Schwartz, R.H. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat. Immunol. 4, 235–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ma, D.K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, M.-S. et al. DNA demethylation in hormone-induced transcriptional derepression. Nature 461, 1007–1012 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Okada, Y., Yamagata, K., Hong, K., Wakayama, T. & Zhang, Y. A role for the elongator complex in zygotic paternal genome demethylation. Nature 463, 554–558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and Gadd45. Cell 135, 1201–1212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kimura, C. et al. Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev. Biol. 225, 304–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, B. et al. 5-Methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc. Natl. Acad. Sci. USA 97, 5135–5139 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cau, E., Gradwohl, G., Casarosa, S., Kageyama, R. & Guillemot, F. Hes genes regulates sequential stages of neurogenesis in the olfactory epithelium. Development 127, 2323–2332 (2000).

    CAS  PubMed  Google Scholar 

  33. Kageyama, R., Ohtsuka, T. & Kobayashi, T. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134, 1243–1251 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Oka, C. et al. Disruption of the mouse RBP-Jκ gene results in early embryonic death. Development 121, 3291–3301 (1995).

    CAS  PubMed  Google Scholar 

  35. Kageyama, R., Ohtsuka, T., Shimojo, H. & Imayoshi, I. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat. Neurosci. 11, 1247–1251 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Bettenhausen, B., Hrabĕ de Angelis, M., Simon, D., Guénet, J.L. & Gossler, A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418 (1995).

    CAS  PubMed  Google Scholar 

  37. Hatakeyama, J. & Kageyama, R. Notch1 expression is spatiotemporally correlated with neurogenesis and negatively regulated by Notch1-independent Hes genes in the developing nervous system. Cereb. Cortex 16 (suppl. 1), i132–i137 (2006).

    Article  PubMed  Google Scholar 

  38. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in Notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Nakahira, E., Kagawa, T., Shimizu, T., Goulding, M.D. & Ikenaka, K. Direct evidence that ventral forebrain cells migrate to the cortex and contribute to the generation of cortical myelinating oligodendrocytes. Dev. Biol. 291, 123–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Iwasaki, Y. et al. The potential to induce glial differentiation is conserved between Drosophila and mammalian glial cells missing genes. Development 130, 6027–6035 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Kageyama, J.S. Nye, T. Miyazaki and T. Honjo for plasmids, T.-e.U and Y. Imai for MBD4 mutant mice, and R. Kageyama, D. van der Kooy and K. Nakashima for comments. This work was supported by a Grant-in-Aid for Exploratory Research (19650096) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (K.I.S.H.).

Author information

Authors and Affiliations

Authors

Contributions

S.H. designed and carried out the experiments, analyzed the data and wrote the paper. Y.I., A.K., S.J., K.F.T. and T.H. generated Gcm mutant mice and analyzed the phenotypes. T.K. and S.K. carried out the experiments related to MBD4 knockout mice. Y.H. and K.I. supervised the project.

Corresponding author

Correspondence to Seiji Hitoshi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1–9 and Supplementary Table 1 (PDF 2603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitoshi, S., Ishino, Y., Kumar, A. et al. Mammalian Gcm genes induce Hes5 expression by active DNA demethylation and induce neural stem cells. Nat Neurosci 14, 957–964 (2011). https://doi.org/10.1038/nn.2875

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2875

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing