Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brain cannabinoid CB2 receptors modulate cocaine's actions in mice

Abstract

The presence and function of cannabinoid CB2 receptors in the brain have been the subjects of much debate. We found that systemic, intranasal or intra-accumbens local administration of JWH133, a selective CB2 receptor agonist, dose-dependently inhibited intravenous cocaine self-administration, cocaine-enhanced locomotion, and cocaine-enhanced accumbens extracellular dopamine in wild-type and CB1 receptor knockout (CB1−/−, also known as Cnr1−/−) mice, but not in CB2−/− (Cnr2−/−) mice. This inhibition was mimicked by GW405833, another CB2 receptor agonist with a different chemical structure, and was blocked by AM630, a selective CB2 receptor antagonist. Intra-accumbens administration of JWH133 alone dose-dependently decreased, whereas intra-accumbens administration of AM630 elevated, extracellular dopamine and locomotion in wild-type and CB1−/− mice, but not in CB2−/− mice. Intra-accumbens administration of AM630 also blocked the reduction in cocaine self-administration and extracellular dopamine produced by systemic administration of JWH133. These findings suggest that brain CB2 receptors modulate cocaine's rewarding and locomotor-stimulating effects, likely by a dopamine-dependent mechanism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Effects of JWH133 on cocaine self-administration.
Figure 2: Effects of GW405833 or JWH133 on cocaine self-administration.
Figure 3: Systemic administration of JWH133 (10 and 20 mg per kg, intraperitoneal, 30 min before cocaine) dose-dependently inhibited cocaine-enhanced locomotion in wild-type (a, two-way ANOVA for repeated measures over time, F2,16 = 14.45, P < 0.001) and CB1−/− (b, F2,18 = 12.57, P < 0.001) mice, but not in CB2−/− (c, F2,12 = 0.17, P = 0.85) mice.
Figure 4: Effects of systemic or local intra-NAc administration of JWH133 or AM630 on locomotor activity.
Figure 5: Effects of systemic JWH133 and/or AM630 on NAc DA.
Figure 6: Effects of intranasal or intra-NAc local perfusion of JWH133 or AM630 on extracellular NAc DA.

References

  1. 1

    Parolaro, D. & Rubino, T. The role of the endogenous cannabinoid system in drug addiction. Drug News Perspect. 21, 149–157 (2008).

    CAS  PubMed  Google Scholar 

  2. 2

    Mackie, K. Cannabinoid receptors: where they are and what they do. J. Neuroendocrinol. 20 (suppl. 1), 10–14 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Glass, M., Dragunow, M. & Faull, R.L. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77, 299–318 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Griffin, G., Tao, Q. & Abood, M.E. Cloning and pharmacological characterization of the rat CB2 cannabinoid receptor. J. Pharmacol. Exp. Ther. 292, 886–894 (2000).

    CAS  PubMed  Google Scholar 

  5. 5

    Munro, S., Thomas, K.L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Malan, T.P. Jr. et al. CB2 cannabinoid receptor agonists: pain relief without psychoactive effects? Curr. Opin. Pharmacol. 3, 62–67 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Stella, N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58, 1017–1030 (2010).

    Article  Google Scholar 

  8. 8

    Baek, J.H., Zheng, Y., Darlington, C.L. & Smith, P.F. Cannabinoid CB2 receptor expression in the rat brainstem cochlear and vestibular nuclei. Acta Otolaryngol. (Stockh.) 128, 1–7 (2008).

    Article  Google Scholar 

  9. 9

    Gong, J.-P. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 1071, 10–23 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Onaivi, E.S. et al. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann. NY Acad. Sci. 1074, 514–536 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Van Sickle, M.D. et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310, 329–332 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Guindon, J. & Hohmann, A.G. Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br. J. Pharmacol. 153, 319–334 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Jhaveri, M.D. et al. Evidence for a novel functional role of cannabinoid CB2 receptors in the thalamus of neuropathic rats. Eur. J. Neurosci. 27, 1722–1730 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Goncalves, M.B. et al. A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol. Cell. Neurosci. 38, 526–536 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Viscomi, M.T. et al. Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J. Neurosci. 29, 4564–4570 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Sagredo, O. et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease. Glia 57, 1154–1167 (2009).

    Article  Google Scholar 

  17. 17

    Elmes, S.J.R., Jhaveri, M.D., Smart, D., Kendall, D.A. & Chapman, V. Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naive rats and in rat models of inflammatory and neuropathic pain. Eur. J. Neurosci. 20, 2311–2320 (2004).

    Article  Google Scholar 

  18. 18

    Sagar, D.R. et al. Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats. Eur. J. Neurosci. 22, 371–379 (2005).

    Article  Google Scholar 

  19. 19

    Morgan, N.H., Stanford, I.M. & Woodhall, G.L. Functional CB2 type cannabinoid receptors at CNS synapses. Neuropharmacology 57, 356–368 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Ashton, J.C., Wright, J.L., McPartland, J.M. & Tyndall, J.D.A. Cannabinoid CB1 and CB2 receptor ligand specificity and the development of CB2-selective agonists. Curr. Med. Chem. 15, 1428–1443 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Huffman, J.W. CB2 receptor ligands. Mini Rev. Med. Chem. 5, 641–649 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Richardson, N.R. & Roberts, D.C.S. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J. Neurosci. Methods 66, 1–11 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Soria, G. et al. Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology 30, 1670–1680 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Li, X. et al. Attenuation of basal and cocaine-enhanced locomotion and nucleus accumbens dopamine in cannabinoid CB1 receptor knockout mice. Psychopharmacology (Berl.) 204, 1–11 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Thakur, G.A., Nikas, S.P. & Makriyannis, A. CB1 cannabinoid receptor ligands. Mini Rev. Med. Chem. 5, 631–640 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Valenzano, K.J. et al. Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology 48, 658–672 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Xi, Z.-X. Cannabinoid CB1 receptor antagonists attenuate cocaine's rewarding effects: experiments with self-administration and brain-stimulation reward in rats. Neuropsychopharmacology 33, 1735–1745 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Costantino, H.R., Illum, L., Brandt, G., Johnson, P.H. & Quay, S.C. Intranasal delivery: physicochemical and therapeutic aspects. Int. J. Pharm. 337, 1–24 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Schwarting, R.K.W. & Huston, J.P. Behavioral and neurochemical dynamics of neurotoxic meso-striatal dopamine lesions. Neurotoxicology 18, 689–708 (1997).

    CAS  PubMed  Google Scholar 

  31. 31

    Bardo, M.T. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit. Rev. Neurobiol. 12, 37–67 (1998).

    CAS  Article  Google Scholar 

  32. 32

    Malan, T.P. Jr. et al. CB2 cannabinoid receptor–mediated peripheral antinociception. Pain 93, 239–245 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Chin, C.-L. et al. Differential effects of cannabinoid receptor agonists on regional brain activity using pharmacological MRI. Br. J. Pharmacol. 153, 367–379 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Mukherjee, S. et al. Species comparison and pharmacological characterization of rat and human CB2 cannabinoid receptors. Eur. J. Pharmacol. 505, 1–9 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Yao, B.B. et al. In vitro pharmacological characterization of AM1241: a protean agonist at the cannabinoid CB2 receptor? Br. J. Pharmacol. 149, 145–154 (2006).

    CAS  Article  Google Scholar 

  36. 36

    Bingham, B. et al. Species-specific in vitro pharmacological effects of the cannabinoid receptor 2 (CB2) selective ligand AM1241 and its resolved enantiomers. Br. J. Pharmacol. 151, 1061–1070 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Ibrahim, M.M. et al. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc. Natl. Acad. Sci. USA 102, 3093–3098 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Atwood, B.K. & Mackie, K. CB2: a cannabinoid receptor with an identity crisis. Br. J. Pharmacol. 160, 467–479 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Brown, S.M., Wager-Miller, J. & Mackie, K. Cloning and molecular characterization of the rat CB2 cannabinoid receptor. Biochim. Biophys. Acta 1576, 255–264 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Schatz, A.R., Lee, M., Condie, R.B., Pulaski, J.T. & Kaminski, N.E. Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system. Toxicol. Appl. Pharmacol. 142, 278–287 (1997).

    CAS  Article  Google Scholar 

  41. 41

    Liu, Q.-R. et al. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav. 8, 519–530 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Bayewitch, M. et al. The peripheral cannabinoid receptor: adenylate cyclase inhibition and G protein coupling. FEBS Lett. 375, 143–147 (1995).

    CAS  Article  Google Scholar 

  43. 43

    Lanciego, J.L. et al. Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis. J. Psychopharmacol. 25, 97–104 (2010).

    Article  Google Scholar 

  44. 44

    Zhang, J. et al. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur. J. Neurosci. 17, 2750–2754 (2003).

    Article  Google Scholar 

  45. 45

    Anand, U. et al. Cannabinoid receptor CB2 localization and agonist-mediated inhibition of capsaicin responses in human sensory neurons. Pain 138, 667–680 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Ross, R.A. et al. Actions of cannabinoid receptor ligands on rat cultured sensory neurones: implications for antinociception. Neuropharmacology 40, 221–232 (2001).

    CAS  Article  Google Scholar 

  47. 47

    Beltramo, M. et al. CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms. Eur. J. Neurosci. 23, 1530–1538 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Haydon, P.G., Blendy, J., Moss, S.J. & Rob Jackson, F. Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology 56 (suppl. 1), 83–90 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Zimmer, A., Zimmer, A.M., Hohmann, A.G., Herkenham, M. & Bonner, T.I. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl. Acad. Sci. USA 96, 5780–5785 (1999).

    CAS  Article  Google Scholar 

  50. 50

    Buckley, N.E. et al. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor. Eur. J. Pharmacol. 396, 141–149 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Shaham and E.A. Stein of the Intramural Research Program of the National Institute on Drug Abuse, and K. Mackie of Indiana University for their helpful comments on this manuscript. This research was supported by the Intramural Research Program of the National Institute on Drug Abuse.

Author information

Affiliations

Authors

Contributions

Z.-X.X. developed the original research proposal, designed and supervised all of the experiments, analyzed all of the data and wrote the manuscript. X.-Q.P., X.L. and R.S. conducted the cocaine self-administration experiments. X.L., G.-H.B. and H.-Y.Z. conducted the in vivo microdialysis experiments. X.L., H.-J.Y., R.S. and J.L. conducted the locomotor behavioral experiments. X.-Q.P., R.S. and H.-J.Y. conducted the conditioned place preference/aversion experiments. Q.-R.L. contributed to the original research proposal. E.L.G. contributed to the original idea of this work and was responsible for overall supervision of the research and for revisions and modifications to the manuscript.

Corresponding author

Correspondence to Zheng-Xiong Xi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 270 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xi, ZX., Peng, XQ., Li, X. et al. Brain cannabinoid CB2 receptors modulate cocaine's actions in mice. Nat Neurosci 14, 1160–1166 (2011). https://doi.org/10.1038/nn.2874

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing