Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons

Abstract

Laminin-332 is a major component of the dermo-epidermal skin basement membrane and maintains skin integrity. The transduction of mechanical force into electrical signals by sensory endings in the skin requires mechanosensitive channels. We found that mouse epidermal keratinocytes produce a matrix that is inhibitory for sensory mechanotransduction and that the active molecular component is laminin-332. Substrate-bound laminin-332 specifically suppressed one type of mechanosensitive current (rapidly adapting) independently of integrin-receptor activation. This mechanotransduction suppression could be exerted locally and was mediated by preventing the formation of protein tethers necessary for current activation. We also found that laminin-332 could locally control sensory axon branching behavior. Loss of laminin-332 in humans led to increased sensory terminal branching and may lead to a de-repression of mechanosensitive currents. These previously unknown functions for this matrix molecule may explain some of the extreme pain experienced by individuals with epidermolysis bullosa who are deficient in laminin-332.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Keratinocyte-derived matrix suppresses mechanotransduction currents.
Figure 2: Laminin-332 reproduces the suppression of rapidly adapting mechanosensitive currents.
Figure 3: Laminin-332–containing matrix does not support tether formation and exerts its effect independent of integrin receptors.
Figure 4: Laminin-332 suppression of the rapidly adapting mechanosensitive current is local, not global.
Figure 5: Differential growth behavior on laminin and laminin-332.
Figure 6: Laminin-332 markedly alters the network structure of the matrix.
Figure 7: Human laminin-332 deficiency sensitizes mechanotransduction.
Figure 8: Altered sensory afferent branching in the skin of laminin-332–deficient individuals.

Similar content being viewed by others

References

  1. Aumailley, M., Has, C., Tunggal, L. & Bruckner–Tuderman, L. Molecularbasis of inherited skin-blistering disorders, and therapeutic implications. Expert Rev. Mol. Med. 8, 1–21 (2006).

    Article  PubMed  Google Scholar 

  2. Marinkovich, M.P. Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat. Rev. Cancer 7, 370–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Uitto, J. & Richard, G. Progress in epidermolysis bullosa: genetic classification and clinical implications. Am. J. Med. Genet. 131C, 61–74 (2004).

    Article  PubMed  Google Scholar 

  4. Aumailley, M. et al. A simplified laminin nomenclature. Matrix Biol. 24, 326–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Tomaselli, K.J. et al. Expression of beta 1 integrins in sensory neurons of the dorsal root ganglion and their functions in neurite outgrowth on two laminin isoforms. J. Neurosci. 13, 4880–4888 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewin, G.R. & Moshourab, R. Mechanosensation and pain. J. Neurobiol. 61, 30–44 (2004).

    Article  PubMed  Google Scholar 

  7. Kruger, L., Silverman, J.D., Mantyh, P.W., Sternini, C. & Brecha, N.C. Peripheral patterns of calcitonin gene–related peptide general somatic sensory innervation: cutaneous and deep terminations. J. Comp. Neurol. 280, 291–302 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Zylka, M.J., Rice, F.L. & Anderson, D.J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Halata, Z. The Mechanoreceptors of the Mammalian Skin Ultrastructure and Morphological Classification (Springer-Verlag, Berlin, 1975).

  10. Sinclair, D. Mechanisms of Cutaneous Sensation (Oxford University Press, 1981).

  11. Bruckner-Tuderman, L. Biology of the extracellular matrix. in Dermatology (eds. Bologna, J. & Jorizzo, J.L.) 1483–1496 (Mosby, London, 2003).

  12. Hu, J., Chiang, L.Y., Koch, M. & Lewin, G.R. Evidence for a protein tether involved in somatic touch. EMBO J. 29, 855–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lechner, S.G., Frenzel, H., Wang, R. & Lewin, G.R. Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO J. 28, 1479–1491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wetzel, C. et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature 445, 206–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hu, J. & Lewin, G.R. Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J. Physiol. (Lond.) 577, 815–828 (2006).

    Article  CAS  Google Scholar 

  16. Drew, L.J. & Wood, J.N. FM1–43 is a permeant blocker of mechanosensitive ion channels in sensory neurons and inhibits behavioral responses to mechanical stimuli. Mol. Pain 3, 1 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Drew, L.J. et al. High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain. PLoS ONE 2, e515 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Drew, L.J., Wood, J.N. & Cesare, P. Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons. J. Neurosci. 22, RC228 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  19. McCarter, G.C., Reichling, D.B. & Levine, J.D. Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci. Lett. 273, 179–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Hao, J. & Delmas, P. Multiple desensitization mechanisms of mechanotransducer channels shape firing of mechanosensory neurons. J. Neurosci. 30, 13384–13395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Masunaga, T. et al. Localization of laminin-5 in the epidermal basement membrane. J. Histochem. Cytochem. 44, 1223–1230 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Jensen, K.B., Jensen, O.N., Ravn, P., Clark, B.F. & Kristensen, P. Identification of keratinocyte-specific markers using phage display and mass spectrometry. Mol. Cell. Proteomics 2, 61–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Culley, B. et al. Laminin-5 promotes neurite outgrowth from central and peripheral chick embryonic neurons. Neurosci. Lett. 301, 83–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Rousselle, P., Lunstrum, G.P., Keene, D.R. & Burgeson, R.E. Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J. Cell Biol. 114, 567–576 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Xia, Y., Gil, S.G. & Carter, WG. Anchorage mediated by integrin a6134 to laminin-5 (Epiligrin) regulates tyrosine phosphorylation of a membrane–associated 80-kDa protein. J. Cell Biol. 132, 727–740 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Aumailley, M., El Khal, A., Knoss, N. & Tunggal, L. Laminin-5 processing and its integration into the ECM. Matrix Biol. 22, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Tsuruta, D. et al. Crucial role of the specificity-determining loop of the Integrin β4 subunit in the binding of cells to Laminin-5 and outside-in signal transduction. J. Biol. Chem. 278, 38707–38714 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kariya, Y. & Miyazaki, K. The basement membrane protein laminin-5 acts as a soluble cell motility factor. Exp. Cell Res. 297, 508–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Plopper, G. et al. Changes in expression of monoclonal antibody epitopes on laminin-5r induced by cell contact. J. Cell Sci. 109, 1965–1973 (1996).

    CAS  PubMed  Google Scholar 

  30. von Philipsborn, A.C. et al. Microcontact printing of axon guidance molecules for generation of graded patterns. Nat. Protoc. 1, 1322–1328 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. von Philipsborn, A.C. et al. Growth cone navigation in substrate-bound ephrin gradients. Development 133, 2487–2495 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Lewin, G.R. & McMahon, S.B. Physiological properties of primary sensory neurons appropriately and inappropriately innervating skin in the adult rat. J. Neurophysiol. 66, 1205–1217 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Amano, S. et al. Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain. J. Biol. Chem. 275, 22728–22735 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Simone, D.A., Nolano, M., Johnson, T., Wendelschafer–Crabb, G. & Kennedy, W.R. Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J. Neurosci. 18, 8947–8959 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herod, J., Denyer, J., Goldman, A. & Howard, R. Epidermolysis bullosa in children: pathophysiology, anaesthesia and pain management. Paediatr. Anaesth. 12, 388–397 (2002).

    Article  PubMed  Google Scholar 

  36. Fine, J.D., Johnson, L.B., Weiner, M. & Suchindran, C. Assessment of mobility, activities and pain in different subtypes of epidermolysis bullosa. Clin. Exp. Dermatol. 29, 122–127 (2004).

    Article  PubMed  Google Scholar 

  37. Nishimune, H., Sanes, J.R. & Carlson, S.S. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432, 580–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Sann, S.B., Xu, L., Nishimune, H., Sanes, J.R. & Spitzer, N.C. Neurite outgrowth and in vivo sensory innervation mediated by a Ca(V)2.2-laminin beta 2 stop signal. J. Neurosci. 28, 2366–2374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lechner, S.G. & Lewin, G.R. Peripheral sensitization of nociceptors via G protein–dependent potentiation of mechanotransduction currents. J. Physiol. (Lond.) 587, 3493–3503 (2009).

    Article  CAS  Google Scholar 

  40. Paladini, R.D. & Coulombe, P.A. Directed expression of keratin 16 to the progenitor basal cells of transgenic mouse skin delays skin maturation. J. Cell Biol. 142, 1035–1051 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verrando, P. et al. Keratinocytes from junctional epidermolysis bullosa do adhere and migrate on the basement membrane protein nicein through alpha 3 beta 1 integrin. Lab. Invest. 71, 567–574 (1994).

    CAS  PubMed  Google Scholar 

  42. Dittert, I. et al. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J. Neurosci. Methods 151, 178–185 (2006).

    Article  PubMed  Google Scholar 

  43. Hasko, J.A. & Richardson, G.P. The ultrastructural organization and properties of the mouse tectorial membrane matrix. Hear. Res. 35, 21–38 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Gara, S.K. et al. Three novel collagen VI chains with high homology to the alpha3 chain. J. Biol. Chem. 283, 10658–10670 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Fine, J.D. et al. The classification of inherited epidermolysis bullosa (EB): report of the Third International Consensus Meeting on Diagnosis and Classification of EB. J. Am. Acad. Dermatol. 58, 931–950 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Lewin laboratory for advice and comments on the manuscript. H. Thränhardt and A. Wegner provided excellent technical support. We thank R. Bönsch for performing the western blot for laminin-332. We also thank M. Bastmeyer and A. von Philipsborn for their help in establishing the micro-contact printing method in the laboratory. We are grateful to B. Erdmann for help and advice with the TEM experiments. This work was supported by grants from the Deutsche Forschungsgemeinschaft (G.R.L. and M.K.), a Network Epidermolysis Bullosa grant from the Federal Ministry of Education and Research (BMBF, L.B.-T.) and a von Humboldt fellowship (J.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.H., L.-Y.C. and K.P. performed the electrophysiology experiments and L.-Y.C. carried out the TEM analysis. B.E.O. and M.K. provided laminin-111/Nidogen complexes and recombinant β3 and γ2. K.P. carried out micro-contact printing with L.-Y.C. and performed time-lapse experiments. K.P. carried out AFM experiments. Neurite outgrowth assays and human skin immunocytochemistry were performed by K.P. with help from N.D. and Y.A.B.S. L.B.-T. provided and characterized the human keratinoctyes. L.-Y.C., J.H., K.P. and G.R.L. planned the experiments and analyzed data. G.R.L. and J.H. wrote the paper.

Corresponding authors

Correspondence to Jing Hu or Gary R Lewin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 4201 kb)

Supplementary Video 1

Neurite outgrowth over laminin/laminin cross-hatched pattern. (AVI 38049 kb)

Supplementary Video 2

Neurite outgrowth over laminin/laminin-332 cross-hatched pattern. (AVI 25049 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, LY., Poole, K., Oliveira, B. et al. Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons. Nat Neurosci 14, 993–1000 (2011). https://doi.org/10.1038/nn.2873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing