Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal basis of sequential foraging decisions in a patchy environment

Abstract

Deciding when to leave a depleting resource to exploit another is a fundamental problem for all decision makers. The neuronal mechanisms mediating patch-leaving decisions remain unknown. We found that neurons in primate (Macaca mulatta) dorsal anterior cingulate cortex, an area that is linked to reward monitoring and executive control, encode a decision variable signaling the relative value of leaving a depleting resource for a new one. Neurons fired during each sequential decision to stay in a patch and, for each travel time, these responses reached a fixed threshold for patch-leaving. Longer travel times reduced the gain of neural responses for choosing to stay in a patch and increased the firing rate threshold mandating patch-leaving. These modulations more closely matched behavioral decisions than any single task variable. These findings portend an understanding of the neural basis of foraging decisions and endorse the unification of theoretical and experimental work in ecology and neuroscience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patch-leaving task.
Figure 2: Monkeys obey the marginal value theorem in a virtual patchy foraging task.
Figure 3: Firing rates of dACC neurons integrate patch residence time and travel time in computations occurring over multiple actions.
Figure 4: Firing rates of dACC neurons rise to a threshold associated with patch abandonment.
Figure 5: Travel time governs both neuronal response gain and threshold.

Similar content being viewed by others

References

  1. Prins, H.H.T. Ecology and Behavior of the African Buffalo: Social Inequality and Decision Making (Chapman and Hall, London, 1996).

  2. Charnov, E.L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).

    Article  CAS  Google Scholar 

  3. Stephens, D.W. & Krebs, J.R. Foraging Theory (Princeton University Press, Princeton, NJ, 1986).

  4. Bendesky, A., Tsunozaki, M., Rockman, M.V., Kruglyak, L. & Bargmann, C.I. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472, 313–318 (2011).

    Article  CAS  Google Scholar 

  5. Thompson, D. & Fedak, M.A. How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim. Behav. 61, 287–296 (2001).

    Article  Google Scholar 

  6. McNickle, G.G. & Cahill, J.F. Jr . Plant root growth and the marginal value theorem. Proc. Natl. Acad. Sci. USA 106, 4747–4751 (2009).

    Article  CAS  Google Scholar 

  7. Smith, E.A. & Winterhalder, B. Evolutionary Ecology and Human Behavior (de Gruyer, New York, 1992).

  8. Agetsuma, N. Simulation of patch use by monkeys using operant conditioning. J. Ethology 16, 49–55 (1999).

    Article  Google Scholar 

  9. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  Google Scholar 

  10. Gold, J.I. & Shadlen, M.N. Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36, 299–308 (2002).

    Article  CAS  Google Scholar 

  11. Hanes, D.P. & Schall, J.D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996).

    Article  CAS  Google Scholar 

  12. Schall, J.D. On building a bridge between brain and behavior. Annu. Rev. Psychol. 55, 23–50 (2004).

    Article  Google Scholar 

  13. Carpenter, R.H.S. Movements of the Eyes (Pion, London, 1988).

  14. Kennerley, S.W., Walton, M.E., Behrens, T.E., Buckley, M.J. & Rushworth, M.F. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9, 940–947 (2006).

    Article  CAS  Google Scholar 

  15. Rushworth, M.F. & Behrens, T.E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article  CAS  Google Scholar 

  16. Holroyd, C.B. & Coles, M.G. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709 (2002).

    Article  Google Scholar 

  17. Seo, H. & Lee, D. Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game. J. Neurosci. 27, 8366–8377 (2007).

    Article  CAS  Google Scholar 

  18. Quilodran, R., Rothe, M. & Procyk, E. Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron 57, 314–325 (2008).

    Article  CAS  Google Scholar 

  19. Ito, S., Stuphorn, V., Brown, J.W. & Schall, J.D. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302, 120–122 (2003).

    Article  CAS  Google Scholar 

  20. Williams, Z.M., Bush, G., Rauch, S.L., Cosgrove, G.R. & Eskandar, E.N. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nat. Neurosci. 7, 1370–1375 (2004).

    Article  CAS  Google Scholar 

  21. Hayden, B.Y. & Platt, M.L. Neurons in anterior cingulate cortex multiplex information about reward and action. J. Neurosci. 30, 3339–3346 (2010).

    Article  CAS  Google Scholar 

  22. Hayden, B.Y., Pearson, J.M. & Platt, M.L. Fictive reward signals in the anterior cingulate cortex. Science 324, 948–950 (2009).

    Article  CAS  Google Scholar 

  23. Shima, K. & Tanji, J. Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282, 1335–1338 (1998).

    Article  CAS  Google Scholar 

  24. Shidara, M. & Richmond, B.J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709–1711 (2002).

    Article  Google Scholar 

  25. Baler, R.D. & Volkow, N.D. Drug addiction: the neurobiology of disrupted self-control. Trends Mol. Med. 12, 559–566 (2006).

    Article  CAS  Google Scholar 

  26. Stern, E. et al. A functional neuroanatomy of tics in Tourette syndrome. Arch. Gen. Psychiatry 57, 741–748 (2000).

    Article  CAS  Google Scholar 

  27. Devinsky, O., Morrell, M.J. & Vogt, B.A. Contributions of anterior cingulate cortex to behavior. Brain 118, 279–306 (1995).

    Article  Google Scholar 

  28. Stephens, D.W. & Anderson, D. The adaptive value of preference for immediacy: when shortsighted rules have farsighted consequences. Behav. Ecol. 12, 330–339 (2001).

    Article  Google Scholar 

  29. Evans, T.A. & Beran, M.J. Delay of gratification and delay maintenance by rhesus macaques (Macaca mulatta). J. Gen. Psychol. 134, 199–216 (2007).

    Article  Google Scholar 

  30. Kim, S., Hwang, J. & Lee, D. Prefrontal coding of temporally discounted values during intertemporal choice. Neuron 59, 161–172 (2008).

    Article  CAS  Google Scholar 

  31. Louie, K. & Glimcher, P.W. Separating value from choice: delay discounting activity in the lateral intraparietal area. J. Neurosci. 30, 5498–5507 (2010).

    Article  CAS  Google Scholar 

  32. Kahneman, D., Knetsch, J.L. & Thaler, R.H. Anomalies: the endowment effect, loss aversion, and the status quo bias. J. Econ. Perspect. 5, 193–206 (1991).

    Article  Google Scholar 

  33. Mazur, J.E. An adjusting procedure for studying delayed reinforcement. in Quantitative Analyses of Behavior, vol 5. The Effect of Delay and Intervening Events on Reinforcement Value (eds. Commons, M.L., Mazur, J.E., Nevin, J.A. & Rachlin, H.) (Erlbaum, Mahway, New Jersey, 1987).

  34. Roitman, J.D. & Shadlen, M.N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    Article  CAS  Google Scholar 

  35. Horwitz, G.D., Batista, A.P. & Newsome, W.T. Representation of an abstract perceptual decision in macaque superior colliculus. J. Neurophysiol. 91, 2281–2296 (2004).

    Article  Google Scholar 

  36. Tobler, P.N., Fiorillo, C.D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

    Article  CAS  Google Scholar 

  37. Yu, A.J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).

    Article  CAS  Google Scholar 

  38. Marr, D.C. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, New York, 1982).

  39. Latty, T. & Beekman, M. Food quality affects search strategy in the acellular slime mold, Physarum polycephalum. Behav. Ecol. 20, 1160–1167 (2009).

    Article  Google Scholar 

  40. Bonser, R., Wright, P.J., Bament, S. & Chukwu, U.O. Optimal patch use by foraging workers of Lasius fuliginosus, L. niger and Myrmica ruginodis. Ecol. Entomol. 23, 15–21 (1998).

    Article  Google Scholar 

  41. Wallis, J.D. & Kennerley, S.W. Heterogeneous reward signals in prefrontal cortex. Curr. Opin. Neurobiol. 20, 191–198 (2010).

    Article  CAS  Google Scholar 

  42. Sallet, J. et al. Expectations, gains, and losses in the anterior cingulate cortex. Cogn. Affect. Behav. Neurosci. 7, 327–336 (2007).

    Article  Google Scholar 

  43. Kennerley, S.W., Dahmubed, A.F., Lara, A.H. & Wallis, J.D. Neurons in the frontal lobe encode the value of multiple decision variables. J. Cogn. Neurosci. 21, 1162–1178 (2008).

    Article  Google Scholar 

  44. Matsumoto, M., Matsumoto, K., Abe, H. & Tanaka, K. Medial prefrontal cell activity signaling prediction errors of action values. Nat. Neurosci. 10, 647–656 (2007).

    Article  CAS  Google Scholar 

  45. Amiez, C., Joseph, J.P. & Procyk, E. Reward encoding in the monkey anterior cingulate cortex. Cereb. Cortex 16, 1040–1055 (2006).

    Article  CAS  Google Scholar 

  46. Hayden, B.Y., Heilbronner, S.R., Pearson, J.M. & Platt, M.L. Surprise signals in anterior cingulate cortex: neuronal encoding of unsigned reward prediction errors driving adjustment in behavior. J. Neurosci. 31, 4178–4187 (2011).

    Article  CAS  Google Scholar 

  47. Stephens, D.W., Brown, J.S. & Ydenberg, R.C. Foraging: Behavior and Ecology (University of Chicago Press, Chicago, 2007).

  48. Wilson, E.O. Consilience: The Unity of Knowledge (Knopf, New York, 1998).

  49. Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  50. Cornelissen, F.W., Peters, E. & Palmer, J. The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behav. Res. Methods Instrum. Comput. 34, 613–617 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Heilbronner for comments on design, analysis and writing. This research was supported by US National Institutes of Health grant R01EY013496 (M.L.P.), a Fellowship from the Tourette Syndrome Association (B.Y.H.) and US National Institutes of Health grant K99 DA027718-01 (B.Y.H.).

Author information

Authors and Affiliations

Authors

Contributions

B.Y.H. designed the experiment and collected the data. B.Y.H. and J.M.P. contributed to data analysis. B.Y.H., J.M.P. and M.L.P. wrote the manuscript.

Corresponding author

Correspondence to Benjamin Y Hayden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Refereneces (PDF 4065 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, B., Pearson, J. & Platt, M. Neuronal basis of sequential foraging decisions in a patchy environment. Nat Neurosci 14, 933–939 (2011). https://doi.org/10.1038/nn.2856

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2856

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing