Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptically driven state transitions in distal dendrites of striatal spiny neurons

Abstract

Striatal spiny neurons (SPNs) associate a diverse array of cortically processed information to regulate action selection. But how this is done by SPNs is poorly understood. A key step in this process is the transition of SPNs from a hyperpolarized 'down state' to a sustained, depolarized 'up state'. These transitions are thought to reflect a sustained synaptic barrage, involving the coordination of hundreds of pyramidal neurons. Indeed, in mice, simulation of cortical input by glutamate uncaging on proximal dendritic spines produced potential changes in SPNs that tracked input time course. However, brief glutamate uncaging at spines on distal dendrites evoked somatic up states lasting hundreds of milliseconds. These regenerative events depended upon both NMDA receptors and voltage-dependent Ca2+ channels. Moreover, they were bidirectionally regulated by dopamine receptor signaling. This capacity not only changes our model of how up states are generated in SPNs, it also has fundamental implications for the associative process underlying action selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: State transitions can be triggered by local stimulation of distal dendrites.
Figure 2: State transitions generated by proximal and distal dendritic glutamate uncaging are independent of the somatic EPSP size and internal solution used in the recording electrode.
Figure 3: State transition generation is similar in dSPN and iSPNs.
Figure 4: State transition generation requires NMDA receptors and voltage-gated Ca2+ channels.
Figure 5: NMDA acts at distal dendritic synapses to enable state transition generation.
Figure 6: Neuron modeling supports synergistic action of NMDA receptors and T- and R-type Ca2+ channels in up-state generation and maintenance.
Figure 7: Up-state duration is modulated by dopamine and adenosine receptor signaling.

Similar content being viewed by others

References

  1. Gerfen, C.R. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15, 133–139 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Yin, H.H. & Knowlton, B.J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Surmeier, D.J. et al. The role of dopamine in modulating the structure and function of striatal circuits. Prog. Brain Res. 183, 149–167 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson, C.J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Plenz, D. & Kitai, S.T. Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J. Neurosci. 18, 266–283 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stern, E.A., Jaeger, D. & Wilson, C.J. Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394, 475–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Day, M., Wokosin, D., Plotkin, J.L., Tian, X. & Surmeier, D.J. Differential excitability and modulation of striatal medium spiny neuron dendrites. J. Neurosci. 28, 11603–11614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Poirazi, P. & Mel, B.W. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779–796 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Bargas, J., Galarraga, E. & Aceves, J. Dendritic activity on neostriatal neurons as inferred from somatic intracellular recordings. Brain Res. 539, 159–163 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Vergara, R. et al. Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J. Physiol. (Lond.) 553, 169–182 (2003).

    Article  CAS  Google Scholar 

  13. Ding, J., Peterson, J.D. & Surmeier, D.J. Corticostriatal and thalamostriatal synapses have distinctive properties. J. Neurosci. 28, 6483–6492 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, A.D. & Bolam, J.P. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci. 13, 259–265 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, S.J., Escobedo-Lozoya, Y., Szatmari, E.M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Branco, T., Clark, B.A. & Häusser, M. Dendritic discrimination of temporal input sequences in cortical neurons. Science 329, 1671–1675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larkum, M.E., Nevian, T., Sandler, M., Polsky, A. & Schiller, J. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325, 756–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Golding, N.L., Staff, N.P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Holthoff, K., Kovalchuk, Y. & Konnerth, A. Dendritic spikes and activity-dependent synaptic plasticity. Cell Tissue Res. 326, 369–377 (2006).

    Article  PubMed  Google Scholar 

  20. Galarraga, E., Hernandez-Lopez, S., Reyes, A., Barral, J. & Bargas, J. Dopamine facilitates striatal EPSPs through an L-type Ca2+ conductance. Neuroreport 8, 2183–2186 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Day, M. et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9, 251–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. McRory, J.E. et al. Molecular and functional characterization of a family of rat brain T-type calcium channels. J. Biol. Chem. 276, 3999–4011 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Bargas, J., Howe, A., Eberwine, J., Cao, Y. & Surmeier, D.J. Cellular and molecular characterization of Ca2+ currents in acutely isolated, adult rat neostriatal neurons. J. Neurosci. 14, 6667–6686 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Higley, M.J. & Sabatini, B.L. Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat. Neurosci. 13, 958–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilson, C.J. Dendritic morphology, inward rectification and the functional properties of neostriatal neurons. in Single Neuron Computation (eds. McKenna, T., Davis, J. & Zornetzer, S.F.) 141–171 (Academic Press, 1992).

  26. Surmeier, D.J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Surmeier, D.J., Song, W.J. & Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579–6591 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cepeda, C., Buchwald, N.A. & Levine, M.S. Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc. Natl. Acad. Sci. USA 90, 9576–9580 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwarzschild, M.A., Agnati, L., Fuxe, K., Chen, J.F. & Morelli, M. Targeting adenosine A2A receptors in Parkinson's disease. Trends Neurosci. 29, 647–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Kampa, B.M. & Stuart, G.J. Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J. Neurosci. 26, 7424–7432 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Losonczy, A. & Magee, J.C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Crandall, S.R., Govindaiah, G. & Cox, C.L. Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. J. Neurosci. 30, 15419–15429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pomata, P.E., Belluscio, M.A., Riquelme, L.A. & Murer, M.G. NMDA receptor gating of information flow through the striatum in vivo. J. Neurosci. 28, 13384–13389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Charpier, S., Mahon, S. & Deniau, J.M. In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience 91, 1209–1222 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Kasanetz, F., Riquelme, L.A., O'Donnell, P. & Murer, M.G. Turning off cortical ensembles stops striatal up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo. J. Physiol. (Lond.) 577, 97–113 (2006).

    Article  CAS  Google Scholar 

  36. West, A.R. & Grace, A.A. Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J. Neurosci. 22, 294–304 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sjöström, P.J., Rancz, E.A., Roth, A. & Hausser, M. Dendritic excitability and synaptic plasticity. Physiol. Rev. 88, 769–840 (2008).

    Article  PubMed  Google Scholar 

  38. Pidoux, M., Mahon, S., Deniau, J.M. & Charpier, S. Integration and propagation of somatosensory responses in the corticostriatal pathway: an intracellular study in vivo. J. Physiol. (Lond.) 589, 263–281 (2011).

    Article  CAS  Google Scholar 

  39. Mahon, S., Deniau, J.M. & Charpier, S. Various synaptic activities and firing patterns in cortico-striatal and striatal neurons in vivo. J. Physiol. (Paris) 97, 557–566 (2003).

    Article  Google Scholar 

  40. Centonze, D., Picconi, B., Gubellini, P., Bernardi, G. & Calabresi, P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci. 13, 1071–1077 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pawlak, V. & Kerr, J.N. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J. Neurosci. 28, 2435–2446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Graybiel, A.M., Aosaki, T., Flaherty, A.W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Kawaguchi, Y., Wilson, C.J., Augood, S.J. & Emson, P.C. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 18, 527–535 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Tepper, J.M., Wilson, C.J. & Koós, T. Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Res. Rev. 58, 272–281 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Czubayko, U. & Plenz, D. Fast synaptic transmission between striatal spiny projection neurons. Proc. Natl. Acad. Sci. USA 99, 15764–15769 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaczorowski, C.C., Disterhoft, J. & Spruston, N. Stability and plasticity of intrinsic membrane properties in hippocampal CA1 pyramidal neurons: effects of internal anions. J. Physiol. (Lond.) 578, 799–818 (2007).

    Article  CAS  Google Scholar 

  48. Bloodgood, B.L. & Sabatini, B.L. Nonlinear regulation of unitary synaptic signals by CaV2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron 53, 249–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Hines, M.L. & Carnevale, N.T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Gertler, T.S., Chan, C.S. & Surmeier, D.J. Dichotomous anatomical properties of adult striatal medium spiny neurons. J. Neurosci. 28, 10814–10824 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The US National Institutes of Health (NS 034696, MH074866), the Picower Foundation and CHDI Foundation supported this work. We thank J. Dempster, K. Saporito, N. Schwarz, S. Ulrich and D. Wokosin for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.L.P. conducted experiments and data analysis; M.D. conducted the experiments in cortical pyramidal neurons and provided technical assistance with uncaging; D.J.S. supervised the project; and D.J.S. and J.L.P. designed the experiments and prepared the manuscript.

Corresponding author

Correspondence to D James Surmeier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 2253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plotkin, J., Day, M. & Surmeier, D. Synaptically driven state transitions in distal dendrites of striatal spiny neurons. Nat Neurosci 14, 881–888 (2011). https://doi.org/10.1038/nn.2848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing