Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents


Waves of correlated activity sweeping across the early postnatal mouse retina promote the segregation and refinement of retinofugal projections. This process has been thought to be spontaneous and unaffected by visual experience. We found, however, that light prolongs spiking during the waves and enhances the segregation of retinogeniculate afferents, and that it did so by activating melanopsin-expressing, intrinsically photosensitive retinal ganglion cells.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Light increases wave duration in conventional ganglion cells.
Figure 2: Light enhances ocular segregation of retinogeniculate afferents by a melanopsin-dependent mechanism.


  1. Huberman, A.D., Feller, M.B. & Chapman, B. Annu. Rev. Neurosci. 31, 479–509 (2008).

    CAS  Article  Google Scholar 

  2. Zheng, J., Lee, S. & Zhou, Z.J. Nat. Neurosci. 9, 363–371 (2006).

    CAS  Article  Google Scholar 

  3. Chandrasekaran, A.R., Plas, D.T., Gonzalez, E. & Crair, M.C. J. Neurosci. 25, 6929–6938 (2005).

    CAS  Article  Google Scholar 

  4. Butts, D.A., Kanold, P.O. & Shatz, C.J. PLoS Biol. 5, e61 (2007).

    Article  Google Scholar 

  5. Rich, K.A., Zhan, Y. & Blanks, J.C. J. Comp. Neurol. 388, 47–63 (1997).

    CAS  Article  Google Scholar 

  6. Hattar, S., Liao, H.W., Takao, M., Berson, D.M. & Yau, K.W. Science 295, 1065–1070 (2002).

    CAS  Article  Google Scholar 

  7. Berson, D.M., Dunn, F.A. & Takao, M. Science 295, 1070–1073 (2002).

    CAS  Article  Google Scholar 

  8. Do, M.T. & Yau, K.W. Physiol. Rev. 90, 1547–1581 (2010).

    CAS  Article  Google Scholar 

  9. Zhang, D.Q. et al. Proc. Natl. Acad. Sci. USA 105, 14181–14186 (2008).

    CAS  Article  Google Scholar 

  10. Tu, D.C. et al. Neuron 48, 987–999 (2005).

    CAS  Article  Google Scholar 

  11. Sekaran, S. et al. Curr. Biol. 15, 1099–1107 (2005).

    CAS  Article  Google Scholar 

  12. Lucas, R.J. et al. Science 299, 245–247 (2003).

    CAS  Article  Google Scholar 

  13. Torborg, C.L. & Feller, M.B. J. Neurosci. Methods 135, 17–26 (2004).

    CAS  Article  Google Scholar 

  14. Sekaran, S., Foster, R.G., Lucas, R.J. & Hankins, M.W. Curr. Biol. 13, 1290–1298 (2003).

    CAS  Article  Google Scholar 

  15. Johnson, J. et al. Proc. Natl. Acad. Sci. USA 107, 17374–17378 (2010).

    CAS  Article  Google Scholar 

Download references


We thank S. Hattar for sharing his Opn4Cre mouse line, J. Gandy for assistance with data processing and D. Boghossian for technical assistance. In addition, we would like to thank M. Crair and O. Dhande for advice on ocular injection techniques. This work was supported by US National Institutes of Health R01 grants EY012793 and EY017137, and F32 grant EY020108.

Author information

Authors and Affiliations



S.W. performed the multi-electrode array recordings. J.M.R. performed the loose-patch recordings and the anatomical tracing studies. J.M.R. carried out all data analysis for both electrophysiological and anatomical studies. J.M.R. and D.M.B. wrote the manuscript.

Corresponding author

Correspondence to Jordan M Renna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 3813 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Renna, J., Weng, S. & Berson, D. Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nat Neurosci 14, 827–829 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing