Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit


Zinc is abundant in the central nervous system and regulates pain, but the underlying mechanisms are unknown. In vitro studies have shown that extracellular zinc modulates a plethora of signaling membrane proteins, including NMDA receptors containing the NR2A subunit, which display exquisite zinc sensitivity. We created NR2A-H128S knock-in mice to investigate whether Zn2+–NR2A interaction influences pain control. In these mice, high-affinity (nanomolar) zinc inhibition of NMDA currents was lost in the hippocampus and spinal cord. Knock-in mice showed hypersensitivity to radiant heat and capsaicin, and developed enhanced allodynia in inflammatory and neuropathic pain models. Furthermore, zinc-induced analgesia was completely abolished under both acute and chronic pain conditions. Our data establish that zinc is an endogenous modulator of excitatory neurotransmission in vivo and identify a new mechanism in pain processing that relies on NR2A NMDA receptors. The study also potentially provides a molecular basis for the pain-relieving effects of dietary zinc supplementation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Targeting the NMDA receptor NR2A subunit gene in mice.
Figure 2: High-affinity zinc inhibition of NMDA currents is lost in NR2A-H128S mice.
Figure 3: NR2A-H128S mice show enhanced basal pain sensitivity in response to radiant heat and capsaicin.
Figure 4: NR2A-H128S mice show increased mechanical allodynia under chronic pain.
Figure 5: Zinc analgesia is abolished in NR2A-H128S mice.


  1. 1

    Hambidge, K.M. & Krebs, N.F. Zinc deficiency: a special challenge. J. Nutr. 137, 1101–1105 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Frederickson, C.J., Suh, S.W., Silva, D. & Thompson, R.B. Importance of zinc in the central nervous system: the zinc-containing neuron. J. Nutr. 130, 1471S–1483S (2000).

    CAS  Article  Google Scholar 

  3. 3

    Vogt, K., Mellor, J., Tong, G. & Nicoll, R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26, 187–196 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Ma, J.Y. & Zhao, Z.Q. The effects of Zn2+ on long-term potentiation of C fiber-evoked potentials in the rat spinal dorsal horn. Brain Res. Bull. 56, 575–579 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Ueno, S. et al. Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-D-aspartate receptor activity in hippocampal CA3 circuits. J. Cell Biol. 158, 215–220 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Kodirov, S.A. et al. Synaptically released zinc gates long-term potentiation in fear conditioning pathways. Proc. Natl. Acad. Sci. USA 103, 15218–15223 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Hirzel, K. et al. Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn(2+) as an essential endogenous modulator of glycinergic neurotransmission. Neuron 52, 679–690 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Sensi, S.L., Paoletti, P., Bush, A.I. & Sekler, I. Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 10, 780–791 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Velázquez, R.A., Cai, Y., Shi, Q. & Larson, A.A. The distribution of zinc selenite and expression of metallothionein-III mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission. J. Neurosci. 19, 2288–2300 (1999).

    Article  Google Scholar 

  10. 10

    Jo, S.M., Danscher, G., Schroder, H.D. & Suh, S.W. Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice. Biometals 21, 151–158 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Smart, T.G., Hosie, A.M. & Miller, P.S. Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist 10, 432–442 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Frederickson, C.J., Koh, J.Y. & Bush, A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6, 449–462 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Paoletti, P., Vergnano, A.M., Barbour, B. & Casado, M. Zinc at glutamatergic synapses. Neuroscience 158, 126–136 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Traynelis, S.F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Woolf, C.J. & Salter, M.W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Latremoliere, A. & Woolf, C.J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

    Article  Google Scholar 

  17. 17

    Paoletti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1–NR2A receptors. J. Neurosci. 17, 5711–5725 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Paoletti, P. et al. Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit. Neuron 28, 911–925 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Fayyazuddin, A., Villarroel, A., Le Goff, A., Lerma, J. & Neyton, J. Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 25, 683–694 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Low, C.M., Zheng, F., Lyuboslavsky, P. & Traynelis, S.F. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors. Proc. Natl. Acad. Sci. USA 97, 11062–11067 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Gielen, M., Siegler Retchless, B., Mony, L., Johnson, J.W. & Paoletti, P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459, 703–707 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Scherrer, G. et al. Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc. Natl. Acad. Sci. USA 103, 9691–9696 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Cole, T.B., Wenzel, H.J., Kafer, K.E., Schwartzkroin, P.A. & Palmiter, R.D. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl. Acad. Sci. USA 96, 1716–1721 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Basbaum, A.I., Bautista, D.M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Yeomans, D.C., Pirec, V. & Proudfit, H.K. Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: behavioral evidence. Pain 68, 133–140 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Le Bars, D., Gozariu, M. & Cadden, S.W. Animal models of nociception. Pharmacol. Rev. 53, 597–652 (2001).

    CAS  PubMed  Google Scholar 

  27. 27

    Drdla, R. & Sandkuhler, J. Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo. Mol. Pain 4, 18 (2008).

    Article  Google Scholar 

  28. 28

    Matsumoto, M., Kondo, S., Usdin, T.B. & Ueda, H. Parathyroid hormone 2 receptor is a functional marker of nociceptive myelinated fibers responsible for neuropathic pain. J. Neurochem. 112, 521–530 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Svensson, C.I., Hua, X.Y., Protter, A.A., Powell, H.C. & Yaksh, T.L. Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE(2) release and thermal hyperalgesia. Neuroreport 14, 1153–1157 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Yaksh, T.L., Hua, X.Y., Kalcheva, I., Nozaki-Taguchi, N. & Marsala, M. The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc. Natl. Acad. Sci. USA 96, 7680–7686 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Vardeh, D. et al. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. J. Clin. Invest. 119, 287–294 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Hu, H., Bandell, M., Petrus, M.J., Zhu, M.X. & Patapoutian, A. Zinc activates damage-sensing TRPA1 ion channels. Nat. Chem. Biol. 5, 183–190 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Larson, A.A. & Kitto, K.F. Manipulations of zinc in the spinal cord, by intrathecal injection of zinc chloride, disodium-calcium-EDTA, or dipicolinic acid, alter nociceptive activity in mice. J. Pharmacol. Exp. Ther. 282, 1319–1325 (1997).

    CAS  PubMed  Google Scholar 

  34. 34

    Safieh-Garabedian, B. et al. Zinc reduces the hyperalgesia and upregulation of NGF and IL-1 beta produced by peripheral inflammation in the rat. Neuropharmacology 35, 599–603 (1996).

    CAS  Article  Google Scholar 

  35. 35

    Liu, T., Walker, J.S. & Tracey, D.J. Zinc alleviates thermal hyperalgesia due to partial nerve injury. Neuroreport 10, 1619–1623 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Sendur, O.F., Tastaban, E., Turan, Y. & Ulman, C. The relationship between serum trace element levels and clinical parameters in patients with fibromyalgia. Rheumatol. Int. 28, 1117–1121 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Head, K.A. Peripheral neuropathy: pathogenic mechanisms and alternative therapies. Altern. Med. Rev. 11, 294–329 (2006).

    PubMed  Google Scholar 

  38. 38

    Yoshida, H., Tsuji, K., Sakata, T., Nakagawa, A. & Morita, S. Clinical study of tongue pain: Serum zinc, vitamin B12, folic acid, and copper concentrations, and systemic disease. Br. J. Oral Maxillofac. Surg. 48, 469–472 (2010).

    Article  Google Scholar 

  39. 39

    Al-Hallaq, R.A., Conrads, T.P., Veenstra, T.D. & Wenthold, R.J. NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J. Neurosci. 27, 8334–8343 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Rauner, C. & Kohr, G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate (NMDA) receptor population in adult hippocampal synapses. J. Biol. Chem. 286, 7558–7566 (2010).

    Article  Google Scholar 

  41. 41

    Hatton, C.J. & Paoletti, P. Modulation of triheteromeric NMDA receptors by N-terminal domain ligands. Neuron 46, 261–274 (2005).

    CAS  Article  Google Scholar 

  42. 42

    Mony, L., Kew, J.N., Gunthorpe, M.J. & Paoletti, P. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br. J. Pharmacol. 157, 1301–1317 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Danscher, G. et al. Inhibitory zinc-enriched terminals in mouse spinal cord. Neuroscience 105, 941–947 (2001).

    CAS  Article  Google Scholar 

  44. 44

    Sandkühler, J. Understanding LTP in pain pathways. Mol. Pain 3, 9 (2007).

    Article  Google Scholar 

  45. 45

    Miledi, R., Eusebi, F., Martinez-Torres, A., Palma, E. & Trettel, F. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes. Proc. Natl. Acad. Sci. USA 99, 13238–13242 (2002).

    CAS  Article  Google Scholar 

  46. 46

    Boyce, S. et al. Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology 38, 611–623 (1999).

    CAS  Article  Google Scholar 

  47. 47

    Ma, Q.P. & Hargreaves, R.J. Localization of N-methyl-D-aspartate NR2B subunits on primary sensory neurons that give rise to small-caliber sciatic nerve fibers in rats. Neuroscience 101, 699–707 (2000).

    CAS  Article  Google Scholar 

  48. 48

    Gaveriaux-Ruff, C. et al. Genetic ablation of delta opioid receptors in nociceptive sensory neurons increases chronic pain and abolishes opioid analgesia. Pain 152, 1238–1248 (2011).

    CAS  Article  Google Scholar 

  49. 49

    Sakurada, T., Katsumata, K., Tan-No, K., Sakurada, S. & Kisara, K. The capsaicin test in mice for evaluating tachykinin antagonists in the spinal cord. Neuropharmacology 31, 1279–1285 (1992).

    CAS  Article  Google Scholar 

Download references


We thank B. Puvion, A. Matifas and R. Weibel for technical assistance and E. Krejci for help with the targeting vector. We thank B. Barbour, J. Becker and E. Schwartz for comments on the manuscript. We also thank Victor Faundez (Emory University) for the gift of the ZnT3 antibody. This research was supported by the Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), the Université de Strasbourg, the Agence Nationale de la Recherche (France) grant SynapticZinc (P.P. and B.K.), the US National Institutes of Health, National Institue on Drug Abuse grant DA05010 (B.K.) and an Equipe Fondation pour la Recherche Médicale (FRM) grant (P.P.). C.N. was supported by the FRM and A.M.V. by the Région Ile-de-France.

Author information




B.L.K. and P.P. designed and supervised the study. D.F., J.N. and A.L.G. contributed to the creation NR2A-H128S mutant mouse line. J.N. and P.P. performed the electrophysiologial experiments on Xenopus oocytes. A.M.V. ran electrophysiological characterization of mutant mice and performed the Timm's staining. C.N. performed all of the pain experiments. D.R. and A.-M.O. conducted neurological examination of mutant mice. S.C. and A.M.V. performed immunochemistry. C.G.-R. and J.N. contributed to conceptual aspects of the study. C.N., A.M.V., C.G.-R., A.-M.O., P.P. and B.L.K. wrote the manuscript.

Corresponding author

Correspondence to Pierre Paoletti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 1037 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nozaki, C., Vergnano, A., Filliol, D. et al. Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit. Nat Neurosci 14, 1017–1022 (2011).

Download citation

Further reading


Quick links