Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety

Abstract

Generalized anxiety is thought to result, in part, from impairments in contingency awareness during conditioning to cues that predict aversive or fearful outcomes. Dopamine neurons of the ventral midbrain exhibit heterogeneous responses to aversive stimuli that are thought to provide a critical modulatory signal to facilitate orientation to environmental changes and assignment of motivational value to unexpected events. Here we describe a mouse model in which activation of dopamine neurons in response to an aversive stimulus is attenuated by conditional genetic inactivation of functional NMDA receptors on dopamine neurons. We discovered that altering the magnitude of excitatory responses by dopamine neurons in response to an aversive stimulus was associated with impaired conditioning to a cue that predicts an aversive outcome. Impaired conditioning by these mice was associated with the development of a persistent, generalized anxiety-like phenotype. These data are consistent with a role for dopamine in facilitating contingency awareness that is critical for the prevention of generalized anxiety.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NMDARs control amplitude of activation of dopamine neurons in response to tail pinch.
Figure 2: Cue-dependent fear conditioning is impaired in knockout mice.
Figure 3: Sensitization of ASR following fear conditioning in knockout mice is context independent.
Figure 4: Anxiety-related behavior is enhanced in knockout mice following foot shock conditioning.
Figure 5: Sensory motor gating, peripheral stress response and monoamine levels are not altered following foot shock conditioning.
Figure 6: Conditional restoration of NMDAR signaling to ventral midbrain dopamine neurons prevents generalized anxiety-like behavior.

Similar content being viewed by others

References

  1. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  Google Scholar 

  2. Mantz, J., Thierry, A.M. & Glowinski, J. Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res. 476, 377–381 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Ungless, M.A., Magill, P.J. & Bolam, J.P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Brischoux, F., Chakraborty, S., Brierley, D.I. & Ungless, M.A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. USA 106, 4894–4899 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Chiodo, L.A., Caggiula, A.R., Antelman, S.M. & Lineberry, C.G. Reciprocal influences of activating and immobilizing stimuli on the activity of nigrostriatal dopamine neurons. Brain Res. 176, 385–390 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Joshua, M., Adler, A., Mitelman, R., Vaadia, E. & Bergman, H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J. Neurosci. 28, 11673–11684 (2008).

    Article  CAS  Google Scholar 

  7. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Schultz, W. & Romo, R. Responses of nigrostriatal dopamine neurons to high-intensity somatosensory stimulation in the anesthetized monkey. J. Neurophysiol. 57, 201–217 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Bromberg-Martin, E.S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive and alerting. Neuron 68, 815–834 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Lovibond, P.F. & Shanks, D.R. The role of awareness in Pavlovian conditioning: empirical evidence and theoretical implications. J. Exp. Psychol. Anim. Behav. Process. 28, 3–26 (2002).

    Article  PubMed  Google Scholar 

  11. Grillon, C. Associative learning deficits increase symptoms of anxiety in humans. Biol. Psychiatry 51, 851–858 (2002).

    Article  PubMed  Google Scholar 

  12. Pezze, M.A. & Feldon, J. Mesolimbic dopaminergic pathways in fear conditioning. Prog. Neurobiol. 74, 301–320 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Komendantov, A.O., Komendantova, O.G., Johnson, S.W. & Canavier, C.C. A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J. Neurophysiol. 91, 346–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Overton, P. & Clark, D. Iontophoretically administered drugs acting at the N-methyl-D-aspartate receptor modulate burst firing in A9 dopamine neurons in the rat. Synapse 10, 131–140 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Overton, P.G. & Clark, D. Burst firing in midbrain dopaminergic neurons. Brain Res. Brain Res. Rev. 25, 312–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Zweifel, L.S. et al. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc. Natl. Acad. Sci. USA 106, 7281–7288 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Zweifel, L.S., Argilli, E., Bonci, A. & Palmiter, R.D. Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron 59, 486–496 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Robinson, S., Smith, D.M., Mizumori, S.J. & Palmiter, R.D. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: effects of dopamine receptor activation and anesthesia. Proc. Natl. Acad. Sci. USA 101, 13329–13334 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Chiodo, L.A., Antelman, S.M., Caggiula, A.R. & Lineberry, C.G. Sensory stimuli alter the discharge rate of dopamine (DA) neurons: evidence for two functional types of DA cells in the substantia nigra. Brain Res. 189, 544–549 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Margolis, E.B., Lock, H., Hjelmstad, G.O. & Fields, H.L. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J. Physiol. (Lond.) 577, 907–924 (2006).

    Article  CAS  Google Scholar 

  21. Luo, A.H., Georges, F.E. & Aston-Jones, G.S. Novel neurons in ventral tegmental area fire selectively during the active phase of the diurnal cycle. Eur. J. Neurosci. 27, 408–422 (2008).

    Article  PubMed  Google Scholar 

  22. Davis, M., Falls, W.A., Campeau, S. & Kim, M. Fear-potentiated startle: a neural and pharmacological analysis. Behav. Brain Res. 58, 175–198 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Fadok, J.P., Dickerson, T.M. & Palmiter, R.D. Dopamine is necessary for cue-dependent fear conditioning. J. Neurosci. 29, 11089–11097 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Richardson, R. Shock sensitization of startle: learned or unlearned fear? Behav. Brain Res. 110, 109–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Grillon, C. Startle reactivity and anxiety disorders: aversive conditioning, context and neurobiology. Biol. Psychiatry 52, 958–975 (2002).

    Article  PubMed  Google Scholar 

  26. Koch, M. & Schnitzler, H.U. The acoustic startle response in rats—circuits mediating evocation, inhibition and potentiation. Behav. Brain Res. 89, 35–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Hunter, A.J., Nolan, P.M. & Brown, S.D. Towards new models of disease and physiology in the neurosciences: the role of induced and naturally occurring mutations. Hum. Mol. Genet. 9, 893–900 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Ralph, R.J. et al. The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J. Neurosci. 19, 4627–4633 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Grillon, C. et al. Cortisol and DHEA-S are associated with startle potentiation during aversive conditioning in humans. Psychopharmacology (Berl.) 186, 434–441 (2006).

    Article  CAS  Google Scholar 

  30. Jovanovic, T. et al. Fear potentiation is associated with hypothalamic-pituitary-adrenal axis function in PTSD. Psychoneuroendocrinology 35, 846–857 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Sánchez, M.M. et al. Alterations in diurnal cortisol rhythm and acoustic startle response in nonhuman primates with adverse rearing. Biol. Psychiatry 57, 373–381 (2005).

    Article  PubMed  Google Scholar 

  32. Flood, D.G., Zuvich, E., Marino, M.J. & Gasior, M. The effects of d-amphetamine, methylphenidate, sydnocarb and caffeine on prepulse inhibition of the startle reflex in DBA/2 mice. Psychopharmacology (Berl.) 211, 325–336 (2010).

    Article  CAS  Google Scholar 

  33. Ungless, M.A., Whistler, J.L., Malenka, R.C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001).

    Article  CAS  Google Scholar 

  34. Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57, 760–773 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  Google Scholar 

  36. Swerdlow, N.R. et al. Toward understanding the biology of a complex phenotype: rat strain and substrain differences in the sensorimotor gating-disruptive effects of dopamine agonists. J. Neurosci. 20, 4325–4336 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, San Diego, California, 2001)

Download references

Acknowledgements

We thank A.D. Guler and members of the Palmiter laboratory for thoughtful discussion of this manuscript. We thank G. Froelich, V. Wall and M.J. Kim for technical support. This work was supported in part by US National Institutes of Health grants 2T32 GM007270 (to J.P.F.), 4 R25 GM 058501-05 (to T.M.K.D.) and 1 R01 MH58755 (to S.J.Y.M.).

Author information

Authors and Affiliations

Authors

Contributions

L.S.Z. and J.P.F. designed the experiments. L.S.Z. performed in vivo recordings with assistance from G.L.J. and S.J.Y.M. L.S.Z. and J.P.F. performed behavioral experiments with assistance from M.G.G. and T.M.K.D. E.A. performed slice physiology with support from A.B. R.D.P. constructed the AAV1-fs-HA-NR1 viral vector. J.M.A. purified AAV1-fs-HA-NR1. The manuscript was written by L.S.Z. with assistance from J.P.F. and R.D.P.

Corresponding authors

Correspondence to Larry S Zweifel or Richard D Palmiter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 2406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zweifel, L., Fadok, J., Argilli, E. et al. Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 14, 620–626 (2011). https://doi.org/10.1038/nn.2808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing