Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating

Abstract

The function, trafficking and synaptic signaling of AMPA receptors are tightly regulated by phosphorylation. Ca2+/calmodulin-dependent kinase II (CaMKII) phosphorylates the GluA1 AMPA receptor subunit at Ser831 to increase single-channel conductance. We show that CaMKII increases the conductance of native heteromeric AMPA receptors in mouse hippocampal neurons through phosphorylation of Ser831. In addition, co-expression of transmembrane AMPA receptor regulatory proteins (TARPs) with recombinant receptors is required for phospho-Ser831 to increase conductance of heteromeric GluA1-GluA2 receptors. Finally, phosphorylation of Ser831 increases the efficiency with which each subunit can activate, independent of agonist efficacy, thereby increasing the likelihood that more receptor subunits will be simultaneously activated during gating. This underlies the observation that phospho-Ser831 increases the frequency of openings to larger conductances rather than altering unitary conductance. Together, these findings suggest that CaMKII phosphorylation of GluA1-Ser831 decreases the activation energy for an intrasubunit conformational change that regulates the conductance of the receptor when the channel pore opens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CaMKII enhances γMEAN of hippocampal AMPA receptors recorded in outside-out patches from cultured hippocampal neurons.
Figure 2: The increase in γMEAN from GluA1-GluA2-stargazin–transfected cells is not caused by a stargazin-induced increase in a subpopulation of homomeric GluA1 receptors.
Figure 3: Phosphorylation of GluA1-Ser831 changes γMEAN independent of agonist efficacy.
Figure 4: GluA1-Ser831 phosphorylation increases the coupling efficiency between agonist binding and gating.
Figure 5: GluA1-S831E phosphomimic mutation increases the frequency of higher conductance openings and increases the single-channel coupling efficiency.

Similar content being viewed by others

References

  1. Traynelis, S.F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  Google Scholar 

  2. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  3. Sobolevsky, A.I., Rosconi, M.P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).

    Article  CAS  Google Scholar 

  4. Derkach, V., Barria, A. & Soderling, T.R. Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 3269–3274 (1999).

    Article  CAS  Google Scholar 

  5. Barria, A., Derkach, V. & Soderling, T. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J. Biol. Chem. 272, 32727–32730 (1997).

    Article  CAS  Google Scholar 

  6. Shepherd, J.D. & Huganir, R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    Article  CAS  Google Scholar 

  7. Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    Article  CAS  Google Scholar 

  8. Banke, T.G. et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102 (2000).

    Article  CAS  Google Scholar 

  9. Holmes, W.R. & Grover, L.M. Quantifying the magnitude of changes in synaptic level parameters with long-term potentiation. J. Neurophysiol. 96, 1478–1491 (2006).

    Article  Google Scholar 

  10. Benke, T.A., Lüthi, A., Isaac, J.T. & Collingridge, G.L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 (1998).

    Article  CAS  Google Scholar 

  11. Malenka, R.C., Kauer, J.A., Zucker, R.S. & Nicoll, R.A. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242, 81–84 (1988).

    Article  CAS  Google Scholar 

  12. Lee, H.K. et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631–643 (2003).

    Article  CAS  Google Scholar 

  13. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  Google Scholar 

  14. Silva, A.J., Stevens, C.F., Tonegawa, S. & Wang, Y. Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice. Science 257, 201–206 (1992).

    Article  CAS  Google Scholar 

  15. Lamsa, K., Irvine, E.E., Giese, K.P. & Kullmann, D.M. NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca2+/calmodulin-dependent kinases. J. Physiol. (Lond.) 584, 885–894 (2007).

    Article  CAS  Google Scholar 

  16. Lee, H.K., Takamiya, K., He, K., Song, L. & Huganir, R.L. Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. J. Neurophysiol. 103, 479–489 (2010).

    Article  Google Scholar 

  17. Barria, A., Muller, D., Derkach, V., Griffith, L.C. & Soderling, T.R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042–2045 (1997).

    Article  CAS  Google Scholar 

  18. Mammen, A.L., Kameyama, K., Roche, K.W. & Huganir, R.L. Phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem. 272, 32528–32533 (1997).

    Article  CAS  Google Scholar 

  19. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  20. Lüthi, A. et al. Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity. BMC Neurosci. 5, 44 (2004).

    Article  Google Scholar 

  21. Poncer, J.C., Esteban, J.A. & Malinow, R. Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by α-Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. 22, 4406–4411 (2002).

    Article  CAS  Google Scholar 

  22. Palmer, M.J., Isaac, J.T. & Collingridge, G.L. Multiple, developmentally regulated expression mechanisms of long-term potentiation at CA1 synapses. J. Neurosci. 24, 4903–4911 (2004).

    Article  CAS  Google Scholar 

  23. Smith, T.C. & Howe, J.R. Concentration-dependent substate behavior of native AMPA receptors. Nat. Neurosci. 3, 992–997 (2000).

    Article  CAS  Google Scholar 

  24. Poon, K., Nowak, L.M. & Oswald, R.E. Characterizing single-channel behavior of GluA3 receptors. Biophys. J. 99, 1437–1446 (2010).

    Article  CAS  Google Scholar 

  25. Rosenmund, C., Stern-Bach, Y. & Stevens, C.F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998).

    Article  CAS  Google Scholar 

  26. Jin, R., Banke, T.G., Mayer, M.L., Traynelis, S.F. & Gouaux, E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat. Neurosci. 6, 803–810 (2003).

    Article  CAS  Google Scholar 

  27. Prieto, M.L. & Wollmuth, L.P. Gating modes in AMPA receptors. J. Neurosci. 30, 4449–4459 (2010).

    Article  CAS  Google Scholar 

  28. Wenthold, R.J., Petralia, R.S., Blahos, J. II & Niedzielski, A.S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989 (1996).

    Article  CAS  Google Scholar 

  29. Traynelis, S.F. & Jaramillo, F. Getting the most out of noise in the central nervous system. Trends Neurosci. 21, 137–145 (1998).

    Article  CAS  Google Scholar 

  30. Derkach, V.A. Silence analysis of AMPA receptor mutated at the CaM-kinase II phosphorylation site. Biophys. J. 84, 1701–1708 (2003).

    Article  CAS  Google Scholar 

  31. Swanson, G.T., Kamboj, S.K. & Cull-Candy, S.G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69 (1997).

    Article  CAS  Google Scholar 

  32. Tomita, S., Stein, V., Stocker, T.J., Nicoll, R.A. & Bredt, D.S. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45, 269–277 (2005).

    Article  CAS  Google Scholar 

  33. Oh, M.C. & Derkach, V.A. Dominant role of the GluR2 subunit in regulation of AMPA receptors by CaMKII. Nat. Neurosci. 8, 853–854 (2005).

    Article  CAS  Google Scholar 

  34. Stern-Bach, Y., Russo, S., Neuman, M. & Rosenmund, C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21, 907–918 (1998).

    Article  CAS  Google Scholar 

  35. Deng, F., Price, M.G., Davis, C.F., Mori, M. & Burgess, D.L. Stargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain. J. Neurosci. 26, 7875–7884 (2006).

    Article  CAS  Google Scholar 

  36. Soto, D., Coombs, I.D., Kelly, L., Farrant, M. & Cull-Candy, S.G. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat. Neurosci. 10, 1260–1267 (2007).

    Article  CAS  Google Scholar 

  37. Milstein, A.D. & Nicoll, R.A. TARP modulation of synaptic AMPA receptor trafficking and gating depends on multiple intracellular domains. Proc. Natl. Acad. Sci. USA 106, 11348–11351 (2009).

    Article  CAS  Google Scholar 

  38. Milstein, A.D., Zhou, W., Karimzadegan, S., Bredt, D.S. & Nicoll, R.A. TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 55, 905–918 (2007).

    Article  CAS  Google Scholar 

  39. Nicoll, R.A., Tomita, S. & Bredt, D.S. Auxiliary subunits assist AMPA-type glutamate receptors. Science 311, 1253–1256 (2006).

    Article  CAS  Google Scholar 

  40. Hogner, A. et al. Structural basis for AMPA receptor activation and ligand selectivity: crystal structures of five agonist complexes with the GluR2 ligand-binding core. J. Mol. Biol. 322, 93–109 (2002).

    Article  CAS  Google Scholar 

  41. Frandsen, A. et al. Tyr702 is an important determinant of agonist binding and domain closure of the ligand-binding core of GluR2. Mol. Pharmacol. 67, 703–713 (2005).

    Article  CAS  Google Scholar 

  42. Traynelis, S.F. & Wahl, P. Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J. Physiol. (Lond.) 503, 513–531 (1997).

    Article  CAS  Google Scholar 

  43. Roche, K.W., O′Brien, R.J., Mammen, A.L., Bernhardt, J. & Huganir, R.L. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16, 1179–1188 (1996).

    Article  CAS  Google Scholar 

  44. Boehm, J. et al. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51, 213–225 (2006).

    Article  CAS  Google Scholar 

  45. Lin, D.T. et al. Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation. Nat. Neurosci. 12, 879–887 (2009).

    Article  CAS  Google Scholar 

  46. Tavalin, S.J. AKAP79 selectively enhances protein kinase C regulation of GluR1 at a Ca2+-calmodulin-dependent protein kinase II/protein kinase C site. J. Biol. Chem. 283, 11445–11452 (2008).

    Article  CAS  Google Scholar 

  47. Lisman, J. & Raghavachari, S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci. STKE 2006, re11 (2006).

    Article  Google Scholar 

  48. Lee, H.K. et al. Identification and characterization of a novel phosphorylation site on the GluR1 subunit of AMPA receptors. Mol. Cell. Neurosci. 36, 86–94 (2007).

    Article  CAS  Google Scholar 

  49. Delgado, J.Y. et al. NMDA receptor activation dephosphorylates AMPA receptor glutamate receptor 1 subunits at threonine 840. J. Neurosci. 27, 13210–13221 (2007).

    Article  CAS  Google Scholar 

  50. Serulle, Y. et al. A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 56, 670–688 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Derkach and J. Howe for comments on the manuscript. We thank D. Colquhoun (University College London) for providing software for time course fitting and single channel dwell time and amplitude analysis (SCAN, EKDIST). GluA1 and GluA2 cDNA was provided by P. Seeburg (Max-Planck-Institut für medizinische Forschung) and γ8 cDNA by R. Nicoll (University of California, San Francisco). This work was supported by the US National Institutes of Health (NS068464, NS036654; S.F.T.), the Howard Hughes Medical Institute (R.H.), the Alfred Benzon Foundation (A.S.K., T.G.B.) and the Lundbeck Foundation (A.S.).

Author information

Authors and Affiliations

Authors

Contributions

A.S.K. and M.A.J. performed patch clamp recordings from recombinant and neuronal receptors; M.A.J. performed all recordings with neurons from transgenic animals. T.G.B. performed a subset of rapid agonist application experiments onto recombinant receptors. Y.M., R.C.J. and R.H. generated knock-in mice for this study. T.G.B. and A.S. performed Xenopus oocyte recordings. S.F.T. assisted with experimental design and participated in data analysis and interpretation. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Stephen F Traynelis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 and Supplementary Table 1 (PDF 471 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensen, A., Jenkins, M., Banke, T. et al. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci 14, 727–735 (2011). https://doi.org/10.1038/nn.2804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing