Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neuronal activity regulates the regional vulnerability to amyloid-β deposition

Abstract

Amyloid-β (Aβ) plaque deposition in specific brain regions is a pathological hallmark of Alzheimer's disease. However, the mechanism underlying the regional vulnerability to Aβ deposition in Alzheimer's disease is unknown. Herein, we provide evidence that endogenous neuronal activity regulates the regional concentration of interstitial fluid (ISF) Aβ, which drives local Aβ aggregation. Using in vivo microdialysis, we show that ISF Aβ concentrations in several brain regions of APP transgenic mice before plaque deposition were commensurate with the degree of subsequent plaque deposition and with the concentration of lactate, a marker of neuronal activity. Furthermore, unilateral vibrissal stimulation increased ISF Aβ, and unilateral vibrissal deprivation decreased ISF Aβ and lactate, in contralateral barrel cortex. Long-term unilateral vibrissal deprivation decreased amyloid plaque formation and growth. Our results suggest a mechanism to account for the vulnerability of specific brain regions to Aβ deposition in Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of Aβ and amyloid plaque deposition in Tg2576 mouse brain.
Figure 2: Steady-state ISF Aβ concentrations in young Tg2576 mice before plaque deposition are associated with the level of region-specific plaque deposition in aged Tg2576 mice.
Figure 3: Neuronal activity regulates ISF lactate concentration in vivo.
Figure 4: Steady-state ISF lactate levels in young Tg2576 mice are closely associated with regional ISF Aβ levels in young Tg2576 mice and plaque deposition in aged Tg2576 mice.
Figure 5: Vibrissal activity regulates ISF Aβ levels in vivo.
Figure 6: Diurnal fluctuation of ISF Aβ is closely associated with ISF lactate levels.
Figure 7: Vibrissal deprivation reduces amyloid plaque growth and formation in vivo.

Similar content being viewed by others

References

  1. Selkoe, D.J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    Article  CAS  Google Scholar 

  2. Cirrito, J.R. et al. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J. Neurosci. 23, 8844–8853 (2003).

    Article  CAS  Google Scholar 

  3. Meyer-Luehmann, M. et al. Extracellular amyloid formation and associated pathology in neural grafts. Nat. Neurosci. 6, 370–377 (2003).

    Article  CAS  Google Scholar 

  4. Yan, P. et al. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci. 29, 10706–10714 (2009).

    Article  CAS  Google Scholar 

  5. Raichle, M.E. et al. A default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  Google Scholar 

  6. Buckner, R.L. et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005).

    Article  CAS  Google Scholar 

  7. Buckner, R.L., Andrews-Hanna, J.R. & Schacter, D.L. The brain's default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008).

    Article  Google Scholar 

  8. Buckner, R.L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J. Neurosci. 29, 1860–1873 (2009).

    Article  CAS  Google Scholar 

  9. Vaishnavi, S.N. et al. Regional aerobic glycolysis in the human brain. Proc. Natl. Acad. Sci. USA 107, 17757–17762 (2010).

    Article  CAS  Google Scholar 

  10. Vlassenko, A.G. et al. Spatial correlation between brain aerobic glycolysis and amyloid-beta (Aβ) deposition. Proc. Natl. Acad. Sci. USA 107, 17763–17767 (2010).

    Article  CAS  Google Scholar 

  11. Greicius, M.D., Srivastava, G., Reiss, A.L. & Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA 101, 4637–4642 (2004).

    Article  CAS  Google Scholar 

  12. Hedden, T. et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29, 12686–12694 (2009).

    Article  CAS  Google Scholar 

  13. Sperling, R.A. et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63, 178–188 (2009).

    Article  CAS  Google Scholar 

  14. Hyder, F. et al. Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J. Cereb. Blood Flow Metab. 26, 865–877 (2006).

    Article  CAS  Google Scholar 

  15. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    Article  CAS  Google Scholar 

  16. Wei, W. et al. Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat. Neurosci. 13, 190–196 (2010).

    Article  CAS  Google Scholar 

  17. Cirrito, J.R. et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48, 913–922 (2005).

    Article  CAS  Google Scholar 

  18. Cirrito, J.R. et al. Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58, 42–51 (2008).

    Article  CAS  Google Scholar 

  19. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  Google Scholar 

  20. Pellerin, L. & Magistretti, P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 91, 10625–10629 (1994).

    Article  CAS  Google Scholar 

  21. Uehara, T., Sumiyoshi, T., Itoh, H. & Kurata, K. Lactate production and neurotransmitters; evidence from microdialysis studies. Pharmacol. Biochem. Behav. 90, 273–281 (2008).

    Article  CAS  Google Scholar 

  22. Woolsey, T.A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    Article  CAS  Google Scholar 

  23. Melzer, P. et al. A magnetic device to stimulate selected whiskers of freely moving or restrained small rodents: its application in a deoxyglucose study. Brain Res. 348, 229–240 (1985).

    Article  CAS  Google Scholar 

  24. Durham, D. & Woolsey, T.A. Acute whisker removal reduces neuronal activity in barrels of mouse SmL cortex. J. Comp. Neurol. 178, 629–644 (1978).

    Article  CAS  Google Scholar 

  25. Rojas, M.J., Navas, J.A. & Rector, D.M. Evoked response potential markers for anesthetic and behavioral states. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R189–R196 (2006).

    Article  CAS  Google Scholar 

  26. Kang, J.E. et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009).

    Article  CAS  Google Scholar 

  27. Riedner, B.A. et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30, 1643–1657 (2007).

    Article  Google Scholar 

  28. Vyazovskiy, V.V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 (2008).

    Article  CAS  Google Scholar 

  29. Gilestro, G.F., Tononi, G. & Cirelli, C. Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 324, 109–112 (2009).

    Article  CAS  Google Scholar 

  30. Jankowsky, J.L. et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum. Mol. Genet. 13, 159–170 (2004).

    Article  CAS  Google Scholar 

  31. Bahmanyar, S. et al. Localization of amyloid beta protein messenger RNA in brains from patients with Alzheimer's disease. Science 237, 77–80 (1987).

    Article  CAS  Google Scholar 

  32. Goedert, M. Neuronal localization of amyloid beta protein precursor mRNA in normal human brain and in Alzheimer's disease. EMBO J. 6, 3627–3632 (1987).

    Article  CAS  Google Scholar 

  33. Vassar, R. et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  Google Scholar 

  34. Page, K., Hollister, R., Tanzi, R.E. & Hyman, B.T. In situ hybridization analysis of presenilin 1 mRNA in Alzheimer disease and in lesioned rat brain. Proc. Natl. Acad. Sci. USA 93, 14020–14024 (1996).

    Article  CAS  Google Scholar 

  35. Irizarry, M.C., McNamara, M., Fedorchak, K., Hsiao, K. & Hyman, B.T. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J. Neuropathol. Exp. Neurol. 56, 965–973 (1997).

    Article  CAS  Google Scholar 

  36. Irizarry, M.C., Locascio, J.J. & Hyman, B.T. beta-site APP cleaving enzyme mRNA expression in APP transgenic mice: anatomical overlap with transgene expression and static levels with aging. Am. J. Pathol. 158, 173–177 (2001).

    Article  CAS  Google Scholar 

  37. Bigl, M. et al. Expression of beta-secretase mRNA in transgenic Tg2576 mouse brain with Alzheimer plaque pathology. Neurosci. Lett. 292, 107–110 (2000).

    Article  CAS  Google Scholar 

  38. Goldstein, M.E. et al. Ex vivo occupancy of gamma-secretase inhibitors correlates with brain beta-amyloid peptide reduction in Tg2576 mice. J. Pharmacol. Exp. Ther. 323, 102–108 (2007).

    Article  CAS  Google Scholar 

  39. Meyer-Luehmann, M. et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    Article  CAS  Google Scholar 

  40. Eisele, Y.S. et al. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330, 980–982 (2010).

    Article  CAS  Google Scholar 

  41. Harris, J.A. et al. Transsynaptic progression of amyloid-beta-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68, 428–441 (2010).

    Article  CAS  Google Scholar 

  42. Lazarov, O., Lee, M., Peterson, D.A. & Sisodia, S.S. Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J. Neurosci. 22, 9785–9793 (2002).

    Article  CAS  Google Scholar 

  43. Filippini, N. et al. Distinct patterns of brain activity in young carriers of the APOE-ɛ4 allele. Proc. Natl. Acad. Sci. USA 106, 7209–7214 (2009).

    Article  CAS  Google Scholar 

  44. Kim, J., Basak, J.M. & Holtzman, D.M. The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287–303 (2009).

    Article  CAS  Google Scholar 

  45. Flicker, L. Modifiable lifestyle risk factors for Alzheimer's disease. J. Alzheimers Dis. 20, 803–811 (2010).

    Article  Google Scholar 

  46. Olney, J.W., Wozniak, D.F. & Farber, N.B. Excitotoxic neurodegeneration in Alzheimer disease. New hypothesis and new therapeutic strategies. Arch. Neurol. 54, 1234–1240 (1997).

    Article  CAS  Google Scholar 

  47. Kim, J. et al. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A beta clearance. Neuron 64, 632–644 (2009).

    Article  Google Scholar 

  48. Franklin, K.B. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Academic Press, San Diego, 1996).

  49. Klunk, W.E. et al. Imaging Aβ plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J. Neuropathol. Exp. Neurol. 61, 797–805 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.H. Mach (Washington University School of Medicine, St. Louis) for generously providing methoxy-X04 and X-34. We thank K.H. Ashe (University of Minnesota) for generously providing Tg2576 mice. We thank Eli Lilly and Co. for generously providing m266 and biotinylated 3D6 anti-Aβ antibodies. This work was supported by US National Institutes of Health grants AG033452 (A.W.B.), AG029524 (J.R.C.), AG568127 (J.R.C.), NS06833 (M.E.R.), NS67905 (J.-M.L.), NS32636 (J.-M.L.), AG13956 (D.M.H.), P30NS057105 (D.M.H.) and the Cure Alzheimer's Fund (D.M.H.).

Author information

Authors and Affiliations

Authors

Contributions

A.W.B., M.E.R., J.-M.L. and D.M.H. conceived and designed the study. A.W.B. performed Aβ immunohistochemistry, plaque quantification, steady-state microdialysis, Aβx–40 and Aβx–42 ELISAs, lactate assays, western blots, ISF Aβ t1/2 microdialysis, vibrissal deprivation microdialysis and vibrissal stimulation microdialysis experiments. P.Y. performed long-term vibrissal deprivation, multiphoton microscopy and double immunofluorescence experiments. J.H.R. performed sleep/wake experiments, Aβ1–x ELISAs and lactate assays. F.R.S. collected brain tissue and performed X-34 staining. J.R.C. performed sequential PTX-TTX infusion microdialysis experiments. All of the authors discussed the results. A.W.B. wrote the manuscript with critical evaluation from all authors.

Corresponding author

Correspondence to David M Holtzman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 551 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bero, A., Yan, P., Roh, J. et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci 14, 750–756 (2011). https://doi.org/10.1038/nn.2801

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2801

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing