Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis

Abstract

It is well established that retinal neurogenesis in mouse embryos requires the activation of Notch signaling, but is independent of the Wnt signaling pathway. We found that genetic inactivation of Sfrp1 and Sfrp2, two postulated Wnt antagonists, perturbs retinal neurogenesis. In retinas from Sfrp1−/−; Sfrp2−/− embryos, Notch signaling was transiently upregulated because Sfrps bind ADAM10 metalloprotease and downregulate its activity, an important step in Notch activation. The proteolysis of other ADAM10 substrates, including APP, was consistently altered in Sfrp mutants, whereas pharmacological inhibition of ADAM10 partially rescued the Sfrp1−/−; Sfrp2−/− retinal phenotype. Conversely, ectopic Sfrp1 expression in the Drosophila wing imaginal disc prevented the expression of Notch targets, and this was restored by the coexpression of Kuzbanian, the Drosophila ADAM10 homolog. Together, these data indicate that Sfrps inhibit the ADAM10 metalloprotease, which might have important implications in pathological events, including cancer and Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurogenesis is impaired in the central retina of Sfrp1−/−; Sfrp2−/− embryos.
Figure 2: Notch signaling is transiently upregulated in Sfrp1−/−; Sfrp2−/− retinas.
Figure 3: Inhibition of ADAM10 partially rescues the retinal phenotype of Sfrp1−/−; Sfrp2−/− embryos.
Figure 4: Sfrps interfere with ADAM10-mediated processing of N-cadherin and L1.
Figure 5: Sfrps interferes with ADAM10-mediated processing of APP.
Figure 6: Sfrps interacts with ADAM10.
Figure 7: Sfrp1 interacts with Kuz in Drosophila wing imaginal discs.

Similar content being viewed by others

References

  1. Hayward, P., Kalmar, T. & Arias, A.M. Wnt/Notch signalling and information processing during development. Development 135, 411–424 (2008).

    Article  CAS  Google Scholar 

  2. Livesey, F.J. & Cepko, C.L. Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2, 109–118 (2001).

    Article  CAS  Google Scholar 

  3. Cho, S.H. & Cepko, C.L. Wnt2b/beta-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development 133, 3167–3177 (2006).

    Article  CAS  Google Scholar 

  4. Liu, H. et al. Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev. Biol. 308, 54–67 (2007).

    Article  CAS  Google Scholar 

  5. Fu, X., Sun, H., Klein, W.H. & Mu, X. Beta-catenin is essential for lamination but not neurogenesis in mouse retinal development. Dev. Biol. 299, 424–437 (2006).

    Article  CAS  Google Scholar 

  6. Liu, C. & Nathans, J. An essential role for frizzled 5 in mammalian ocular development. Development 135, 3567–3576 (2008).

    Article  CAS  Google Scholar 

  7. Liu, H., Mohamed, O., Dufort, D. & Wallace, V.A. Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev. Dyn. 227, 323–334 (2003).

    Article  CAS  Google Scholar 

  8. Bovolenta, P., Esteve, P., Ruiz, J.M., Cisneros, E. & Lopez-Rios, J. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J. Cell Sci. 121, 737–746 (2008).

    Article  CAS  Google Scholar 

  9. Satoh, W., Gotoh, T., Tsunematsu, Y., Aizawa, S. & Shimono, A. Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 133, 989–999 (2006).

    Article  CAS  Google Scholar 

  10. Trevant, B. et al. Expression of secreted frizzled related protein 1, a Wnt antagonist, in brain, kidney, and skeleton is dispensable for normal embryonic development. J. Cell. Physiol. 217, 113–126 (2008).

    Article  CAS  Google Scholar 

  11. Satoh, W., Matsuyama, M., Takemura, H., Aizawa, S. & Shimono, A. Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis 46, 92–103 (2008).

    Article  Google Scholar 

  12. Misra, K. & Matise, M.P. A critical role for sFRP proteins in maintaining caudal neural tube closure in mice via inhibition of BMP signaling. Dev. Biol. 337, 74–83 (2010).

    Article  CAS  Google Scholar 

  13. Kobayashi, K. et al. Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat. Cell Biol. 11, 46–55 (2009).

    Article  CAS  Google Scholar 

  14. He, W. et al. Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc. Natl. Acad. Sci. USA 107, 21110–21115 (2010).

    Article  CAS  Google Scholar 

  15. Lee, H.X., Ambrosio, A.L., Reversade, B. & De Robertis, E.M. Embryonic dorsal-ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases. Cell 124, 147–159 (2006).

    Article  CAS  Google Scholar 

  16. Muraoka, O. et al. Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein. Nat. Cell Biol. 8, 329–338 (2006).

    Article  CAS  Google Scholar 

  17. Mii, Y. & Taira, M. Secreted Frizzled-related proteins enhance the diffusion of Wnt ligands and expand their signalling range. Development 136, 4083–4088 (2009).

    Article  CAS  Google Scholar 

  18. Kopan, R. & Ilagan, M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  Google Scholar 

  19. Del Monte, G., Grego-Bessa, J., Gonzalez-Rajal, A., Bolos, V. & De La Pompa, J.L. Monitoring Notch1 activity in development: evidence for a feedback regulatory loop. Dev. Dyn. 236, 2594–2614 (2007).

    Article  CAS  Google Scholar 

  20. Tokunaga, A. et al. Mapping spatio-temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain. J. Neurochem. 90, 142–154 (2004).

    Article  CAS  Google Scholar 

  21. Kim, A.S., Lowenstein, D.H. & Pleasure, S.J. Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon. Mech. Dev. 103, 167–172 (2001).

    Article  CAS  Google Scholar 

  22. Jorissen, E. et al. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J. Neurosci. 30, 4833–4844 (2010).

    Article  CAS  Google Scholar 

  23. Hartmann, D. et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signaling but not for alpha-secretase activity in fibroblasts. Hum. Mol. Genet. 11, 2615–2624 (2002).

    Article  CAS  Google Scholar 

  24. Amour, A. et al. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett. 473, 275–279 (2000).

    Article  CAS  Google Scholar 

  25. Langton, K.P., Barker, M.D. & McKie, N. Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby's fundus dystrophy mutation. J. Biol. Chem. 273, 16778–16781 (1998).

    Article  CAS  Google Scholar 

  26. Ludwig, A. et al. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester–inducible shedding of cell surface molecules. Comb. Chem. High Throughput Screen. 8, 161–171 (2005).

    Article  CAS  Google Scholar 

  27. Reiss, K. et al. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signaling. EMBO J. 24, 742–752 (2005).

    Article  CAS  Google Scholar 

  28. Riedle, S. et al. Nuclear translocation and signaling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gamma-secretase activity. Biochem. J. 420, 391–402 (2009).

    Article  CAS  Google Scholar 

  29. Lichtenthaler, S.F. Alpha-secretase in Alzheimer's disease: molecular identity, regulation and therapeutic potential. J. Neurochem. 116, 10–21 (2011).

    Article  CAS  Google Scholar 

  30. Caillé, I. et al. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131, 2173–2181 (2004).

    Article  Google Scholar 

  31. Stetler-Stevenson, W.G. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci. Signal. 1, re6 (2008).

    Article  Google Scholar 

  32. Micchelli, C.A., Rulifson, E.J. & Blair, S.S. The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant-negative role for Delta and Serrate. Development 124, 1485–1495 (1997).

    CAS  PubMed  Google Scholar 

  33. Uren, A. et al. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. 275, 4374–4382 (2000).

    Article  CAS  Google Scholar 

  34. Lopez-Rios, J., Esteve, P., Ruiz, J.M. & Bovolenta, P. The Netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate. Neural Develop. 3, 19 (2008).

    Article  Google Scholar 

  35. Nolo, R., Abbott, L.A. & Bellen, H.J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349–362 (2000).

    Article  CAS  Google Scholar 

  36. Esteve, P. & Bovolenta, P. Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr. Opin. Neurobiol. 16, 13–19 (2006).

    Article  CAS  Google Scholar 

  37. Wall, D.S. et al. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J. Cell Biol. 184, 101–112 (2009).

    Article  CAS  Google Scholar 

  38. Kubo, F. & Nakagawa, S. Hairy1 acts as a node downstream of Wnt signaling to maintain retinal stem cell–like progenitor cells in the chick ciliary marginal zone. Development 136, 1823–1833 (2009).

    Article  CAS  Google Scholar 

  39. Morcillo, J. et al. Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH. Development 133, 3179–3190 (2006).

    Article  CAS  Google Scholar 

  40. Muraguchi, T. et al. RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat. Neurosci. 10, 838–845 (2007).

    Article  CAS  Google Scholar 

  41. Campbell, C., Risueno, R.M., Salati, S., Guezguez, B. & Bhatia, M. Signal control of hematopoietic stem cell fate: Wnt, Notch, and Hedgehog as the usual suspects. Curr. Opin. Hematol. 15, 319–325 (2008).

    Article  CAS  Google Scholar 

  42. Edwards, D.R., Handsley, M.M. & Pennington, C.J. The ADAM metalloproteinases. Mol. Aspects Med. 29, 258–289 (2008).

    Article  CAS  Google Scholar 

  43. Kuhn, P.H. et al. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J. 29, 3020–3032 (2010).

    Article  CAS  Google Scholar 

  44. Mott, J.D. et al. Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor. J. Biol. Chem. 275, 1384–1390 (2000).

    Article  CAS  Google Scholar 

  45. Gavert, N. et al. Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res. 67, 7703–7712 (2007).

    Article  CAS  Google Scholar 

  46. Matsuda, Y., Schlange, T., Oakeley, E.J., Boulay, A. & Hynes, N.E. WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Res. 11, R32 (2009).

    Article  Google Scholar 

  47. Donmez, G., Wang, D., Cohen, D.E. & Guarente, L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142, 320–332 (2010).

    Article  CAS  Google Scholar 

  48. Torroja, C., Gorfinkiel, N. & Guerrero, I. Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction. Development 131, 2395–2408 (2004).

    Article  CAS  Google Scholar 

  49. Tanimoto, H., Itoh, S., ten Dijke, P. & Tabata, T. Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5, 59–71 (2000).

    Article  CAS  Google Scholar 

  50. Rodriguez, J. et al. SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nat. Neurosci. 8, 1301–1309 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.M. Ruiz for help with initial experiments and I. Dompablo for technical assistance, H. Bellen (Jan and Dan Duncan Neurological Research Institute), T. Tabata (University of Tokyo), S. Campuzano (CSIC–Universidad Autónoma de Madrid) and the Developmental Studies Hybridoma Bank for Drosophila antibodies and stocks, and A. Ludwig (RWTH Aachen University) for the G1254023X compound. This work was supported by grants from the Spanish MICINN (BFU2007-61774), Fundación Mutual Madrileña (2006-0916), Comunidad Autonoma de Madrid (P-SAL-0190-2006), Programa Intramural Especial–CSIC and CIBERER intramural funds to P.B.; CSIC intramural funds to P.E.; grants BFU2008-03320/BMC and CSD2007-00008 from the Spanish Ministerio de Ciencia e Innovación to I.G. and an institutional grant from Fundación Areces given to the Centro de Biología Molecular “Severo Ochoa” to I.G. and M.L.T.

Author information

Authors and Affiliations

Authors

Contributions

P.E. and A. Sandonìs performed most of the immunohistochemical, in situ hybridization and western blot analysis. A. Shimono generated the Sfrp knockout mice. M.C. and I.C. performed immunoprecipitation and binding assays. J.M. and J.A. designed and performed APP shedding experiments in CHO cells. I.G. designed and performed (with C.I.) the assays in Drosophila. S.M. contributed Sfrp1 and Sfrp2 in situ hybridization localization. S.G.-G. and M.L.T. contributed expertise in Notch signaling and flow cytometry. P.B. and P.E. conceived and supervised the study and wrote the manuscript.

Corresponding authors

Correspondence to Pilar Esteve or Paola Bovolenta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 2986 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteve, P., Sandonìs, A., Cardozo, M. et al. SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat Neurosci 14, 562–569 (2011). https://doi.org/10.1038/nn.2794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing