Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presynaptic HCN1 channels regulate CaV3.2 activity and neurotransmission at select cortical synapses

Abstract

The hyperpolarization-activated cyclic nucleotide–gated (HCN) channels are subthreshold, voltage-gated ion channels that are highly expressed in hippocampal and cortical pyramidal cell dendrites, where they are important for regulating synaptic potential integration and plasticity. We found that HCN1 subunits are also localized to the active zone of mature asymmetric synaptic terminals targeting mouse entorhinal cortical layer III pyramidal neurons. HCN channels inhibited glutamate synaptic release by suppressing the activity of low-threshold voltage-gated T-type (CaV3.2) Ca2+ channels. Consistent with this, electron microscopy revealed colocalization of presynaptic HCN1 and CaV3.2 subunit. This represents a previously unknown mechanism by which HCN channels regulate synaptic strength and thereby neural information processing and network excitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pharmacological block or deletion of HCN channels enhances mEPSC frequency in entorhinal cortical layer III pyramids.
Figure 2: HCN channel block or deletion has no effect on mEPSCs in entorhinal cortical layer II and layer V neurons.
Figure 3: HCN1 subunits are localized to active zones of synaptic terminals.
Figure 4: Ca2+ dependence of entorhinal cortical layer III mEPSCs.
Figure 5: T-type Ca2+ channel blockers reduce the increase in mEPSC frequency caused by pharmacological block of Ih or deletion of HCN1 subunits.
Figure 6: CaV3.2 colocalize with HCN1 at entorhinal cortical synaptic terminals and cause the increase in excitatory synaptic transmission following HCN1 channel inhibition.
Figure 7: Hyperpolarization enhances mEPSC frequency by activating T-type Ca2+ channels.
Figure 8: Effects of pharmacologically blocking HCN channels on evoked synaptic release.

Similar content being viewed by others

References

  1. Biel, M., Wahl-Schott, C., Michalakis, S. & Zong, X. Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89, 847–885 (2009).

    Article  CAS  Google Scholar 

  2. Lörincz, A., Notomi, T., Tamas, G., Shigemoto, R. & Nusser, Z. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat. Neurosci. 5, 1185–1193 (2002).

    Article  Google Scholar 

  3. Notomi, T. & Shigemoto, R. Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J. Comp. Neurol. 471, 241–276 (2004).

    Article  CAS  Google Scholar 

  4. Huang, Z., Walker, M.C. & Shah, M.M. Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis. J. Neurosci. 29, 10979–10988 (2009).

    Article  CAS  Google Scholar 

  5. Magee, J.C. Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999).

    Article  CAS  Google Scholar 

  6. George, M.S., Abbott, L.F. & Siegelbaum, S.A. HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K+ channels. Nat. Neurosci. 12, 577–584 (2009).

    Article  CAS  Google Scholar 

  7. Tsay, D., Dudman, J.T. & Siegelbaum, S.A. HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56, 1076–1089 (2007).

    Article  CAS  Google Scholar 

  8. Nolan, M.F. et al. A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119, 719–732 (2004).

    CAS  Google Scholar 

  9. Wang, M. et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129, 397–410 (2007).

    Article  CAS  Google Scholar 

  10. Brager, D.H. & Johnston, D. Plasticity of intrinsic excitability during long-term depression is mediated through mGluR-dependent changes in Ih in hippocampal CA1 pyramidal neurons. J. Neurosci. 27, 13926–13937 (2007).

    Article  CAS  Google Scholar 

  11. Campanac, E., Daoudal, G., Ankri, N. & Debanne, D. Downregulation of dendritic Ih in CA1 pyramidal neurons after LTP. J. Neurosci. 28, 8635–8643 (2008).

    Article  CAS  Google Scholar 

  12. Fan, Y. et al. Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih . Nat. Neurosci. 8, 1542–1551 (2005).

    Article  CAS  Google Scholar 

  13. Bender, R.A. et al. Localization of HCN1 channels to presynaptic compartments: novel plasticity that may contribute to hippocampal maturation. J. Neurosci. 27, 4697–4706 (2007).

    Article  CAS  Google Scholar 

  14. Boyes, J., Bolam, J.P., Shigemoto, R. & Stanford, I.M. Functional presynaptic HCN channels in the rat globus pallidus. Eur. J. Neurosci. 25, 2081–2092 (2007).

    Article  Google Scholar 

  15. Luján, R., Albasanz, J.L., Shigemoto, R. & Juiz, J.M. Preferential localization of the hyperpolarization-activated cyclic nucleotide-gated cation channel subunit HCN1 in basket cell terminals of the rat cerebellum. Eur. J. Neurosci. 21, 2073–2082 (2005).

    Article  Google Scholar 

  16. Aponte, Y., Lien, C.C., Reisinger, E. & Jonas, P. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J. Physiol. (Lond.) 574, 229–243 (2006).

    Article  CAS  Google Scholar 

  17. Southan, A.P., Morris, N.P., Stephens, G.J. & Robertson, B. Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells. J. Physiol. (Lond.) 526, 91–97 (2000).

    Article  CAS  Google Scholar 

  18. Beaumont, V., Zhong, N., Froemke, R.C., Ball, R.W. & Zucker, R.S. Temporal synaptic tagging by Ih activation and actin: involvement in long-term facilitation and cAMP-induced synaptic enhancement. Neuron 33, 601–613 (2002).

    Article  CAS  Google Scholar 

  19. Beaumont, V. & Zucker, R.S. Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels. Nat. Neurosci. 3, 133–141 (2000).

    Article  CAS  Google Scholar 

  20. Cuttle, M.F., Rusznak, Z., Wong, A.Y., Owens, S. & Forsythe, I.D. Modulation of a presynaptic hyperpolarization-activated cationic current (Ih) at an excitatory synaptic terminal in the rat auditory brainstem. J. Physiol. (Lond.) 534, 733–744 (2001).

    Article  CAS  Google Scholar 

  21. Stevens, C.F. Presynaptic function. Curr. Opin. Neurobiol. 14, 341–345 (2004).

    Article  CAS  Google Scholar 

  22. Brun, V.H. et al. Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron 57, 290–302 (2008).

    Article  CAS  Google Scholar 

  23. Remondes, M. & Schuman, E.M. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431, 699–703 (2004).

    Article  CAS  Google Scholar 

  24. Shah, M.M., Anderson, A.E., Leung, V., Lin, X. & Johnston, D. Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 44, 495–508 (2004).

    Article  CAS  Google Scholar 

  25. Williams, S.R. & Mitchell, S.J. Direct measurement of somatic voltage clamp errors in central neurons. Nat. Neurosci. 11, 790–798 (2008).

    Article  CAS  Google Scholar 

  26. Chevaleyre, V. & Castillo, P.E. Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proc. Natl. Acad. Sci. USA 99, 9538–9543 (2002).

    Article  CAS  Google Scholar 

  27. Gill, C.H. et al. Characterization of the human HCN1 channel and its inhibition by capsazepine. Br. J. Pharmacol. 143, 411–421 (2004).

    Article  CAS  Google Scholar 

  28. Pape, H.C. Specific bradycardic agents block the hyperpolarization-activated cation current in central neurons. Neuroscience 59, 363–373 (1994).

    Article  CAS  Google Scholar 

  29. Magee, J.C. Dendritic integration of excitatory synaptic input. Nat. Neurosci. Rev 1, 181–190 (2000).

    Article  CAS  Google Scholar 

  30. Sun, J. et al. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450, 676–682 (2007).

    Article  CAS  Google Scholar 

  31. Daw, M.I., Tricoire, L., Erdelyi, F., Szabo, G. & McBain, C.J. Asynchronous transmitter release from cholecystokinin-containing inhibitory interneurons is widespread and target-cell independent. J. Neurosci. 29, 11112–11122 (2009).

    Article  CAS  Google Scholar 

  32. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319–1328 (2005).

    Article  CAS  Google Scholar 

  33. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008).

    Article  CAS  Google Scholar 

  34. Groffen, A.J. et al. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 327, 1614–1618 (2010).

    Article  CAS  Google Scholar 

  35. Catterall, W.A. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24, 307–323 (1998).

    Article  CAS  Google Scholar 

  36. Tsien, R.W., Ellinor, P.T. & Horne, W.A. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol. Sci. 12, 349–354 (1991).

    Article  CAS  Google Scholar 

  37. Bourinet, E. et al. Interaction of SNX482 with domains III and IV inhibits activation gating of alpha(1E) (Ca(V)2.3) calcium channels. Biophys. J. 81, 79–88 (2001).

    Article  CAS  Google Scholar 

  38. Dreyfus, F.M. et al. Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of IT window. J. Neurosci. 30, 99–109 (2010).

    Article  CAS  Google Scholar 

  39. Shipe, W.D. et al. Design, synthesis, and evaluation of a novel 4-aminomethyl-4-fluoropiperidine as a T-type Ca2+ channel antagonist. J. Med. Chem. 51, 3692–3695 (2008).

    Article  CAS  Google Scholar 

  40. Uebele, V.N. et al. T-type calcium channels regulate cortical plasticity in vivo. Neuroreport [corrected] 20, 257–262 (2009).

    Article  CAS  Google Scholar 

  41. Randall, A.D. & Tsien, R.W. Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology 36, 879–893 (1997).

    Article  CAS  Google Scholar 

  42. Chen, C.C. et al. Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302, 1416–1418 (2003).

    Article  CAS  Google Scholar 

  43. Crunelli, V., Toth, T.I., Cope, D.W., Blethyn, K. & Hughes, S.W. The 'window' T-type calcium current in brain dynamics of different behavioral states. J. Physiol. (Lond.) 562, 121–129 (2005).

    Article  CAS  Google Scholar 

  44. Talavera, K. & Nilius, B. Biophysics and structure-function relationship of T-type Ca2+ channels. Cell Calcium 40, 97–114 (2006).

    Article  CAS  Google Scholar 

  45. Evans, D.I., Jones, R.S. & Woodhall, G. Activation of presynaptic group III metabotropic receptors enhances glutamate release in rat entorhinal cortex. J. Neurophysiol. 83, 2519–2525 (2000).

    Article  CAS  Google Scholar 

  46. Nolan, M.F. et al. The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells. Cell 115, 551–564 (2003).

    Article  CAS  Google Scholar 

  47. Cossart, R. et al. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat. Neurosci. 4, 52–62 (2001).

    Article  CAS  Google Scholar 

  48. Luján, R. & Shigemoto, R. Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum. Eur. J. Neurosci. 23, 1479–1490 (2006).

    Article  Google Scholar 

  49. Luján, R., Nusser, Z., Roberts, J.D., Shigemoto, R. & Somogyi, P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 8, 1488–1500 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D.A. Brown (University College London), D. Johnston (University of Texas), M.C. Walker (University College London) and A. Constanti (University of London) for helpful discussions. We are also grateful to S. Martin (University College London) for genotyping the transgenic mice, K. Venner (University College London) for help with processing some samples for electron microscopy, D. McCarthy (University of London) for assistance with acquisition of some electron micrographs and H. Beck (University of Bonn) and K.P. Campbell (University of Iowa) for providing CaV3.2+/− breeding pairs. This work was supported by an MRC New Investigator Award (G0700369, M.M.S.), a Wellcome Trust project grant (WT087363MA, M.M.S.), a European Research Council Starter Independent Grant (ERC_2010_StG_20091118, M.M.S.), the Spanish Ministry of Science and Innovation (BFU-2009-08404/BFI and CONSOLIDER-Ingenio CSD2008-00005, R.L.), the Junta de Comunidades de Castilla-La Mancha (PAI08-0174-6967, R.L.), an Epilepsy Research UK Grant (0803, A.C.D.) and an MRC Project Grant (G0801756, A.C.D.). The monoclonal antibodies HCN1 (Clone N70/28) and CaV3.2 (Clone N55/10) were developed by and obtained from the University of California at Davis/US National Institutes of Health NeuroMab Facility, supported by US National Institutes of Health grant U24NS050606 and maintained by the University of California at Davis.

Author information

Authors and Affiliations

Authors

Contributions

Z.H. and M.M.S. performed and analyzed the electrophysiological experiments. Z.H., M.M.S. and R.L. performed the electron microscopy experiments. I.K. and A.C.D. performed western blot experiments and analysis. V.N.U. and J.J.R. provided valuable tools. M.M.S. designed the study and wrote the manuscript with contributions from all of the other authors.

Corresponding author

Correspondence to Mala M Shah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–4 (PDF 20481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Lujan, R., Kadurin, I. et al. Presynaptic HCN1 channels regulate CaV3.2 activity and neurotransmission at select cortical synapses. Nat Neurosci 14, 478–486 (2011). https://doi.org/10.1038/nn.2757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2757

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing