Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Golden Goal collaborates with Flamingo in conferring synaptic-layer specificity in the visual system

Abstract

Neuronal connections are often organized in layers that contain synapses between neurons that have similar functions. In Drosophila, R7 and R8 photoreceptors, which detect different wavelengths, form synapses in distinct medulla layers. The mechanisms underlying the specificity of synaptic-layer selection remain unclear. We found that Golden Goal (Gogo) and Flamingo (Fmi), two cell-surface proteins involved in photoreceptor targeting, functionally interact in R8 photoreceptor axons. Our results indicate that Gogo promotes R8 photoreceptor axon adhesion to the temporary layer M1, whereas Gogo and Fmi collaborate to mediate axon targeting to the final layer M3. Structure-function analysis suggested that Gogo and Fmi interact with intracellular components through the Gogo cytoplasmic domain. Moreover, Fmi was also required in target cells for R8 photoreceptor axon targeting. We propose that Gogo acts as a functional partner of Fmi for R8 photoreceptor axon targeting and that the dynamic regulation of their interaction specifies synaptic-layer selection of photoreceptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: fmi regulates synaptic-layer targeting and does not require its cytoplasmic domain.
Figure 2: Phenotypic similarities between gogo and fmi.
Figure 3: gogo genetically interacts with fmi.
Figure 4: Gogo and Fmi colocalize at cell-cell contacts.
Figure 5: Gogo interacts with Fmi in cis in wing cells.
Figure 6: Gogo and Fmi interact with intracellular components through the Gogo cytoplasmic domain.
Figure 7: Fmi is required in target cells for R8 photoreceptor synaptic-layer targeting.
Figure 8: Antagonistic interaction between Gogo and Fmi at the M1 layer.

Similar content being viewed by others

References

  1. Luo, L. & Flanagan, J.G. Development of continuous and discrete neural maps. Neuron 56, 284–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Huberman, A.D., Clandinin, T.R. & Baier, H. Molecular and cellular mechanisms of lamina-specific axon targeting. Cold Spring Harb. Perspect. Biol. 2, a001743 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sanes, J.R. & Zipursky, S.L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanes, J.R. & Yamagata, M. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Yamagata, M. & Sanes, J.R. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451, 465–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Yamagata, M., Weiner, J.A. & Sanes, J.R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Ting, C.Y. & Lee, C.H. Visual circuit development in Drosophila. Curr. Opin. Neurobiol. 17, 65–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Mast, J.D., Prakash, S., Chen, P.L. & Clandinin, T.R. The mechanisms and molecules that connect photoreceptor axons to their targets in Drosophila. Semin. Cell Dev. Biol. 17, 42–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Astigarraga, S., Hofmeyer, K. & Treisman, J.E. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis. Curr. Opin. Genet. Dev. 20, 400–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, C.H., Herman, T., Clandinin, T.R., Lee, R. & Zipursky, S.L. N-cadherin regulates target specificity in the Drosophila visual system. Neuron 30, 437–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Berger, J. et al. Systematic identification of genes that regulate neuronal wiring in the Drosophila visual system. PLoS Genet. 4, e1000085 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maurel-Zaffran, C., Suzuki, T., Gahmon, G., Treisman, J.E. & Dickson, B.J. Cell-autonomous and -nonautonomous functions of LAR in R7 photoreceptor axon targeting. Neuron 32, 225–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Clandinin, T.R. et al. Drosophila LAR regulates R1–R6 and R7 target specificity in the visual system. Neuron 32, 237–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Garrity, P.A. et al. Retinal axon target selection in Drosophila is regulated by a receptor protein tyrosine phosphatase. Neuron 22, 707–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Newsome, T.P., Asling, B. & Dickson, B.J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  16. Shinza-Kameda, M., Takasu, E., Sakurai, K., Hayashi, S. & Nose, A. Regulation of layer-specific targeting by reciprocal expression of a cell adhesion molecule, capricious. Neuron 49, 205–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Shishido, E., Takeichi, M. & Nose, A. Drosophila synapse formation: regulation by transmembrane protein with Leu-rich repeats, CAPRICIOUS. Science 280, 2118–2121 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Tomasi, T., Hakeda-Suzuki, S., Ohler, S., Schleiffer, A. & Suzuki, T. The transmembrane protein Golden goal regulates R8 photoreceptor axon-axon and axon-target interactions. Neuron 57, 691–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, R.C. et al. The protocadherin Flamingo is required for axon target selection in the Drosophila visual system. Nat. Neurosci. 6, 557–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Senti, K.A. et al. Flamingo regulates R8 axon-axon and axon-target interactions in the Drosophila visual system. Curr. Biol. 13, 828–832 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Gao, F.B., Kohwi, M., Brenman, J.E., Jan, L.Y. & Jan, Y.N. Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron 28, 91–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, P.L. & Clandinin, T.R. The cadherin Flamingo mediates level-dependent interactions that guide photoreceptor target choice in Drosophila. Neuron 58, 26–33 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McGuire, S.E., Mao, Z. & Davis, R.L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, pl6 (2004).

    PubMed  Google Scholar 

  25. Vladar, E.K., Antic, D. & Axelrod, J.D. Planar cell polarity signaling: the developing cell's compass. Cold Spring Harb. Perspect. Biol. 1, a002964 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ting, C.Y. et al. Drosophila N-cadherin functions in the first stage of the two-stage layer-selection process of R7 photoreceptor afferents. Development 132, 953–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kimura, H., Usui, T., Tsubouchi, A. & Uemura, T. Potential dual molecular interaction of the Drosophila 7-pass transmembrane cadherin Flamingo in dendritic morphogenesis. J. Cell Sci. 119, 1118–1129 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, W.S. et al. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 133, 1093–1105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strutt, H. & Strutt, D. Differential stability of flamingo protein complexes underlies the establishment of planar polarity. Curr. Biol. 18, 1555–1564 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keleman, K. & Dickson, B.J. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Bazigou, E. et al. Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell 128, 961–975 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Struhl, G. & Basler, K. Organizing activity of wingless protein in Drosophila. Cell 72, 527–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Saka, Y., Hagemann, A.I. & Smith, J.C. Visualizing protein interactions by bimolecular fluorescence complementation in Xenopus. Methods 45, 192–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Gajadhar, A. & Guha, A. A proximity ligation assay using transiently transfected, epitope-tagged proteins: application for in situ detection of dimerized receptor tyrosine kinases. Biotechniques 48, 145–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Shima, Y. et al. Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat. Neurosci. 10, 963–969 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Shima, Y., Kengaku, M., Hirano, T., Takeichi, M. & Uemura, T. Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev. Cell 7, 205–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Grueber, W.B., Jan, L.Y. & Jan, Y.N. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129, 2867–2878 (2002).

    CAS  PubMed  Google Scholar 

  38. Nern, A., Zhu, Y. & Zipursky, S.L. Local N-cadherin interactions mediate distinct steps in the targeting of lamina neurons. Neuron 58, 34–41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takemura, S.Y., Lu, Z. & Meinertzhagen, I.A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509, 493–513 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morante, J. & Desplan, C. The color-vision circuit in the medulla of Drosophila. Curr. Biol. 18, 553–565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fan, Y. et al. The egghead gene is required for compartmentalization in Drosophila optic lobe development. Dev. Biol. 287, 61–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Tree, D.R. et al. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109, 371–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Clandinin, T.R. & Zipursky, S.L. Afferent growth cone interactions control synaptic specificity in the Drosophila visual system. Neuron 28, 427–436 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Strutt, D.I. Asymmetric localization of frizzled and the establishment of cell polarity in the Drosophila wing. Mol. Cell 7, 367–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Thibault, S.T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, J.S. & Luo, L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat. Protoc. 1, 2110–2115 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Hengrung for helping with BiFC experiments, I. Siwanowicz for helping with agarose sections and M. Braun for electron microscopy sections. We thank I. Salecker, T. Clandinin, J. Axelrod, D. Strutt, B. Dickson, K. Keleman, H. Oda, H. Bellen, J. Morante, J. Smith, Developmental Studies Hybridoma Bank (University of Iowa), Drosophila Genetic Resource Center (Kyoto), Exelixis Collection at Harvard and Bloomington Stock Center for reagents, and FlyBase for information resources. We thank R. Klein, F. Schnorrer, J. Egea for suggestions and comments, and members of the Suzuki laboratory for critical discussions. This work was supported by the Max Planck Society and an individual grant from the Deutsche Forschungsgemeinschaft (T.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.H.-S. conducted the genetic and histological experiments. S.B.-M. conducted the cell culture and biochemical experiments and assisted with the genetic experiments. T.T. conducted the lamina cartridge experiments. T. Usui, S.-y.H. and T. Uemura generated and provided the hypomorphic allele of fmi. S.H.-S. and T.S. designed the experiments. S.B.-M., S.H.-S. and T.S. wrote the paper.

Corresponding author

Correspondence to Takashi Suzuki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17, Supplementary Tables 1, 2 and Supplementary Note 1 (PDF 2523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakeda-Suzuki, S., Berger-Müller, S., Tomasi, T. et al. Golden Goal collaborates with Flamingo in conferring synaptic-layer specificity in the visual system. Nat Neurosci 14, 314–323 (2011). https://doi.org/10.1038/nn.2756

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing