Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse

This article has been updated

Abstract

Positive and negative regulation of neurotransmitter receptor aggregation on the postsynaptic membrane is a critical event during synapse formation. Acetylcholine (ACh) and agrin are two opposing signals that regulate ACh receptor (AChR) clustering during neuromuscular junction (NMJ) development. ACh induces dispersion of AChR clusters that are not stabilized by agrin via a cyclin-dependent kinase 5 Cdk5)-mediated mechanism, but regulation of Cdk5 activation is poorly understood. We found that the intermediate filament protein nestin physically interacts with Cdk5 and is required for ACh-induced association of p35, the co-activator of Cdk5, with the muscle membrane. Blockade of nestin-dependent signaling inhibited ACh-induced Cdk5 activation and the dispersion of AChR clusters in cultured myotubes. Similar to the effects of Cdk5 gene inactivation, knockdown of nestin in agrin-deficient mouse embryos ubstantially restored AChR clusters. These results suggest that nestin is required for ACh-induced, Cdk5-dependent dispersion of AChR clusters during NMJ development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colocalization of nestin and AChR clusters and phosphorylation of nestin on ACh stimulation.
Figure 2: Nestin is required for the recruitment of p35 to the muscle membrane to activate Cdk5.
Figure 3: ACh-induced dispersion of AChR clusters was blocked when nestin was knocked down.
Figure 4: Phosphorylation of nestin by Cdk5 is critical for the dispersion of AChRs in myotubes.
Figure 5: The T316A nestin mutant preferentially binds Cdk5 and inhibits Cdk5 activation.
Figure 6: Knockdown of nestin expression in muscle.
Figure 7: Knockdown of nestin expression in vivo rescues the postsynaptic AChR clusters in Agrn−/− mice.

Similar content being viewed by others

Change history

  • 13 February 2011

    In the version of this article initially published online, the bottom two panels of Figure 7 were incorrectly labeled. Instead of reading Agrn, they should read Argn–/–. In addition, a grant number was missing from the Acknowledgments. The second sentence of the Acknowledgments should read “This study is supported by US National Institutes of Health grants HD034534, NS047345, NS060833 and NS044420 (K.-F.L.), Muscular Dystrophy Association fellowship MDA4230 (J.Y.), and Academy of Finland, the Research Institute of the Åbo Akademi University Foundation (J.E.E.)." These errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Wu, H., Xiong, W.C. & Mei, L. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137, 1017–1033 (2010).

    Article  CAS  Google Scholar 

  2. Sanes, J.R. & Lichtman, J.W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  Google Scholar 

  3. Yang, X. et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 399–410 (2001).

    Article  CAS  Google Scholar 

  4. Yang, X., Li, W., Prescott, E.D., Burden, S.J. & Wang, J.C. DNA topoisomerase IIβ and neural development. Science 287, 131–134 (2000).

    Article  CAS  Google Scholar 

  5. Lin, W. et al. Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46, 569–579 (2005).

    Article  CAS  Google Scholar 

  6. Flanagan-Steet, H., Fox, M.A., Meyer, D. & Sanes, J.R. Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development 132, 4471–4481 (2005).

    Article  CAS  Google Scholar 

  7. Fu, A.K. et al. Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc. Natl. Acad. Sci. USA 102, 15224–15229 (2005).

    Article  CAS  Google Scholar 

  8. Patrick, G.N., Zhou, P., Kwon, Y.T., Howley, P.M. & Tsai, L.H. p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J. Biol. Chem. 273, 24057–24064 (1998).

    Article  CAS  Google Scholar 

  9. Gilyarov, A.V. Nestin in central nervous system cells. Neurosci. Behav. Physiol. 38, 165–169 (2008).

    Article  CAS  Google Scholar 

  10. Hombach-Klonisch, S. et al. Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications. J. Mol. Med. 86, 1301–1314 (2008).

    Article  Google Scholar 

  11. Carlsson, L., Li, Z., Paulin, D. & Thornell, L.E. Nestin is expressed during development and in myotendinous and neuromuscular junctions in wild-type and desmin knock-out mice. Exp. Cell Res. 251, 213–223 (1999).

    Article  CAS  Google Scholar 

  12. Nazarian, J., Bouri, K. & Hoffman, E.P. Intracellular expression profiling by laser capture microdissection: three novel components of the neuromuscular junction. Physiol. Genomics 21, 70–80 (2005).

    Article  CAS  Google Scholar 

  13. Kang, H. et al. Regulation of the intermediate filament protein nestin at rodent neuromuscular junctions by innervation and activity. J. Neurosci. 27, 5948–5957 (2007).

    Article  CAS  Google Scholar 

  14. Vaittinen, S. et al. Specific and innervation-regulated expression of the intermediate filament protein nestin at neuromuscular and myotendinous junctions in skeletal muscle. Am. J. Pathol. 154, 591–600 (1999).

    Article  CAS  Google Scholar 

  15. Herrmann, H. & Aebi, U. Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr. Opin. Cell Biol. 12, 79–90 (2000).

    Article  CAS  Google Scholar 

  16. Bloch, R.J. Acetylcholine receptor clustering in rat myotubes: requirement for Ca2+ and effects of drugs which depolymerize microtubules. J. Neurosci. 3, 2670–2680 (1983).

    Article  CAS  Google Scholar 

  17. Weston, C., Yee, B., Hod, E. & Prives, J. Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. J. Cell Biol. 150, 205–212 (2000).

    Article  CAS  Google Scholar 

  18. Luo, Z.G. et al. Implication of geranylgeranyltransferase I in synapse formation. Neuron 40, 703–717 (2003).

    Article  CAS  Google Scholar 

  19. Luo, Z.G. et al. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35, 489–505 (2002).

    Article  CAS  Google Scholar 

  20. Linnoila, J., Wang, Y., Yao, Y. & Wang, Z.Z. A mammalian homolog of Drosophila tumorous imaginal discs, Tid1, mediates agrin signaling at the neuromuscular junction. Neuron 60, 625–641 (2008).

    Article  CAS  Google Scholar 

  21. Lee, C.W. et al. Regulation of acetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking. Nat. Neurosci. 12, 848–856 (2009).

    Article  CAS  Google Scholar 

  22. Shi, L. et al. Ephexin1 is required for structural maturation and neurotransmission at the neuromuscular junction. Neuron 65, 204–216 (2010).

    Article  CAS  Google Scholar 

  23. Michalczyk, K. & Ziman, M. Nestin structure and predicted function in cellular cytoskeletal organisation. Histol. Histopathol. 20, 665–671 (2005).

    CAS  PubMed  Google Scholar 

  24. Hyder, C.L., Pallari, H.M., Kochin, V. & Eriksson, J.E. Providing cellular signposts—post-translational modifications of intermediate filaments. FEBS Lett. 582, 2140–2148 (2008).

    Article  CAS  Google Scholar 

  25. Izawa, I. & Inagaki, M. Regulatory mechanisms and functions of intermediate filaments: a study using site- and phosphorylation state–specific antibodies. Cancer Sci. 97, 167–174 (2006).

    Article  CAS  Google Scholar 

  26. Omary, M.B., Ku, N.O., Tao, G.Z., Toivola, D.M. & Liao, J. “Heads and tails” of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem. Sci. 31, 383–394 (2006).

    Article  CAS  Google Scholar 

  27. Sihag, R.K., Inagaki, M., Yamaguchi, T., Shea, T.B. & Pant, H.C. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp. Cell Res. 313, 2098–2109 (2007).

    Article  CAS  Google Scholar 

  28. Sahlgren, C.M. et al. Cdk5 regulates the organization of Nestin and its association with p35. Mol. Cell. Biol. 23, 5090–5106 (2003).

    Article  CAS  Google Scholar 

  29. Helfand, B.T., Chou, Y.H., Shumaker, D.K. & Goldman, R.D. Intermediate filament proteins participate in signal transduction. Trends Cell Biol. 15, 568–570 (2005).

    Article  CAS  Google Scholar 

  30. Pallari, H.M. & Eriksson, J.E. Intermediate filaments as signaling platforms. Sci. STKE 2006, pe53 (2006).

    Article  Google Scholar 

  31. Sahlgren, C.M. et al. A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO J. 25, 4808–4819 (2006).

    Article  CAS  Google Scholar 

  32. Kim, S. & Coulombe, P.A. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 21, 1581–1597 (2007).

    Article  CAS  Google Scholar 

  33. Patrick, G.N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999).

    Article  CAS  Google Scholar 

  34. Kesavapany, S. et al. p35/cyclin-dependent kinase 5 phosphorylation of ras guanine nucleotide releasing factor 2 (RasGRF2) mediates Rac-dependent extracellular signal-regulated kinase 1/2 activity, altering RasGRF2 and microtubule-associated protein 1b distribution in neurons. J. Neurosci. 24, 4421–4431 (2004).

    Article  CAS  Google Scholar 

  35. Asada, A. et al. Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. J. Neurochem. 106, 1325–1336 (2008).

    Article  CAS  Google Scholar 

  36. Ku, N.O., Fu, H. & Omary, M.B. Raf-1 activation disrupts its binding to keratins during cell stress. J. Cell Biol. 166, 479–485 (2004).

    Article  CAS  Google Scholar 

  37. Ku, N.O., Michie, S., Resurreccion, E.Z., Broome, R.L. & Omary, M.B. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc. Natl. Acad. Sci. USA 99, 4373–4378 (2002).

    Article  CAS  Google Scholar 

  38. Perlson, E. et al. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45, 715–726 (2005).

    Article  CAS  Google Scholar 

  39. Wu, S. et al. Ultraviolet light inhibits translation through activation of the unfolded protein response kinase PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 277, 18077–18083 (2002).

    Article  CAS  Google Scholar 

  40. Chen, F. et al. Rapsyn interaction with calpain stabilizes AChR clusters at the neuromuscular junction. Neuron 55, 247–260 (2007).

    Article  CAS  Google Scholar 

  41. Bloch, R.J. & Steinbach, J.H. Reversible loss of acetylcholine receptor clusters at the developing rat neuromuscular junction. Dev. Biol. 81, 386–391 (1981).

    Article  CAS  Google Scholar 

  42. Lin, S. et al. Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice. Proc. Natl. Acad. Sci. USA 105, 11406–11411 (2008).

    Article  CAS  Google Scholar 

  43. Hamann, M. et al. Synthesis and release of an acetylcholine-like compound by human myoblasts and myotubes. J. Physiol. (Lond.) 489, 791–803 (1995).

    Article  CAS  Google Scholar 

  44. Madhavan, R., Zhao, X.T., Ruegg, M.A. & Peng, H.B. Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering. Mol. Cell. Neurosci. 28, 403–416 (2005).

    Article  CAS  Google Scholar 

  45. Dong, X.P. et al. Shp2 is dispensable in the formation and maintenance of the neuromuscular junction. Neurosignals 15, 53–63 (2006).

    Article  CAS  Google Scholar 

  46. An, M.C. et al. Acetylcholine negatively regulates development of the neuromuscular junction through distinct cellular mechanisms. Proc. Natl. Acad. Sci. USA 107, 10702–10707 (2010).

    Article  CAS  Google Scholar 

  47. Tiscornia, G., Singer, O. & Verma, I.M. Design and cloning of lentiviral vectors expressing small interfering RNAs. Nat. Protoc. 1, 234–240 (2006).

    Article  CAS  Google Scholar 

  48. Singer, O., Tiscornia, G., Ikawa, M. & Verma, I.M. Rapid generation of knockdown transgenic mice by silencing lentiviral vectors. Nat. Protoc. 1, 286–292 (2006).

    Article  CAS  Google Scholar 

  49. Sahlgren, C.M. et al. Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. J. Biol. Chem. 276, 16456–16463 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.-H. Tsai for the Cdk5 and p35 constructs and A. Nagy for communicating his unpublished results. This study is supported by US National Institutes of Health grants HD034534, NS047345, NS060833 and NS044420 (K.-F.L.), Muscular Dystrophy Association fellowship MDA4230 (J.Y.), and Academy of Finland, the Research Institute of the Åbo Akademi University (J.E.E.).

Author information

Authors and Affiliations

Authors

Contributions

J.Y. designed and performed majority of experiments, conducted data analysis and wrote the manuscript. B.D. conducted the transgenic mouse experiment. F.d.W. conducted the transgenic mouse experiment and assisted in data interpretation. T.W.G. assisted in data interpretation and wrote the manuscript. J.E.E. provided constructs and assisted in data interpretation. K.-F.L. supervised the project, designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Kuo-Fen Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Dominguez, B., de Winter, F. et al. Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse. Nat Neurosci 14, 324–330 (2011). https://doi.org/10.1038/nn.2747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing