Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slow integration leads to persistent action potential firing in distal axons of coupled interneurons

Abstract

The conventional view of neurons is that synaptic inputs are integrated on a timescale of milliseconds to seconds in the dendrites, with action potential initiation occurring in the axon initial segment. We found a much slower form of integration that leads to action potential initiation in the distal axon, well beyond the initial segment. In a subset of rodent hippocampal and neocortical interneurons, hundreds of spikes, evoked over minutes, resulted in persistent firing that lasted for a similar duration. Although axonal action potential firing was required to trigger persistent firing, somatic depolarization was not. In paired recordings, persistent firing was not restricted to the stimulated neuron; it could also be produced in the unstimulated cell. Thus, these interneurons can slowly integrate spiking, share the output across a coupled network of axons and respond with persistent firing even in the absence of input to the soma or dendrites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Persistent firing in Htr5b interneurons.
Figure 2: In vivo firing patterns induce persistent firing.
Figure 3: Full-sized action potentials and large and small spikelets during persistent firing match antidromic full and partial spikes.
Figure 4: Simulation of small and large spikelets indicates failure of antidromic action potentials at different locations along the axon.
Figure 5: Persistent firing induced by antidromic stimulation and intercellular signaling.
Figure 6: Calcium effects on persistent firing.
Figure 7: Gap junction blockers inhibit persistent firing.

Similar content being viewed by others

References

  1. Ramon y Cajal, S. Histology of the Nervous System of Man and Vertebrates (Oxford University Press, New York, 1995).

    Google Scholar 

  2. Devor, M. Unexplained peculiarities of the dorsal root ganglion. Pain 6, S27–S35 (1999).

    Article  PubMed  Google Scholar 

  3. Grimes, W.N., Zhang, J., Graydon, C.W., Kachar, B. & Diamond, J.S. Retinal parallel processors: more than 100 independent microcircuits operate within a single interneuron. Neuron 65, 873–885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shepherd, G.M., Chen, W.R., Willhite, D., Migliore, M. & Greer, C.A. The olfactory granule cell: from classical enigma to central role in olfactory processing. Brain Res. Rev. 55, 373–382 (2007).

    Article  PubMed  Google Scholar 

  5. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Bucher, D., Thirumalai, V. & Marder, E. Axonal dopamine receptors activate peripheral spike initiation in a stomatogastric motor neuron. J. Neurosci. 23, 6866–6875 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goaillard, J.-M., Schulz, D.J., Kilman, V.L. & Marder, E. Octopamine modulates the axons of modulatory projection neurons. J. Neurosci. 24, 7063–7073 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meyrand, P., Weimann, J.M. & Marder, E. Multiple axonal spike initiation zones in a motor neuron: serotonin activation. J. Neurosci. 12, 2803–2812 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pinault, D. Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environmental signals. Brain Res. Brain Res. Rev. 21, 42–92 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Heintz, N. Gene expression nervous system atlas (GENSAT). Nat. Neurosci. 7, 483 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klausberger, T. et al. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J. Neurosci. 25, 9782–9793 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cruikshank, S.J. et al. Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc. Natl. Acad. Sci. USA 101, 12364–12369 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tovar, K.R., Maher, B.J. & Westbrook, G.L. Direct actions of carbenoxolone on synaptic transmission and neuronal membrane properties. J. Neurophysiol. 102, 974–978 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hestrin, S. & Galarreta, M. Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 28, 304–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Schmitz, D. et al. Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Bullock, T.H. et al. Neuroscience. The neuron doctrine, redux. Science 310, 791–793 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Fields, R.D. Oligodendrocytes changing the rules: action potentials in glia and oligodendrocytes controlling action potentials. Neuroscientist 14, 540–543 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Halassa, M.M. & Haydon, P.G. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol. 72, 335–355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Major, G. & Tank, D. Persistent neural activity: prevalence and mechanisms. Curr. Opin. Neurobiol. 14, 675–684 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kullmann, D.M. Presynaptic kainate receptors in the hippocampus: slowly emerging from obscurity. Neuron 32, 561–564 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Semyanov, A. & Kullmann, D.M. Kainate receptor–dependent axonal depolarization and action potential initiation in interneurons. Nat. Neurosci. 4, 718–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Keros, S. & Hablitz, J.J. Ectopic action potential generation in cortical interneurons during synchronized GABA responses. Neuroscience 131, 833–842 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. MacVicar, B.A. & Dudek, F.E. Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science 213, 782–785 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Epsztein, J., Lee, A.K., Chorev, E. & Brecht, M. Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration. Science 327, 474–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Bartos, M. et al. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci. USA 99, 13222–13227 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McBain, C.J. & Fisahn, A. Interneurons unbound. Nat. Rev. Neurosci. 2, 11–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Lisman, J.E. et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 31, 234–242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Durstewitz, D., Seamans, J.K. & Sejnowski, T.J. Neurocomputational models of working memory. Nat. Neurosci. 3 Suppl, 1184–1191 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Egorov, A.V., Hamam, B.N., Fransén, E., Hasselmo, M.E. & Alonso, A.A. Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Hines, M.L. & Carnevale, N.T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Erisir, A., Lau, D., Rudy, B. & Leonard, C.S. Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J. Neurophysiol. 82, 2476–2489 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Klausberger, S. Layton and M. Wilson for providing in vivo spiking data, and M. Benton, M. Nusbaum and members of the Spruston laboratory for helpful discussion and comments on the manuscript. We also thank E. Grodinsky for interneuron reconstructions. Grant support was provided by the US National Institutes of Health (NS-046064 to N.S. and W.L.K.) and the National Alliance for Research on Schizophrenia and Depression (N.S.). M.E.J.S. was supported by a Presidential Fellowship from Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design of the experiments and the analysis and interpretation of the data. M.E.J.S. and T.K.B. performed the experiments. W.L.K. performed the simulations. N.S. and B.D.M. wrote the manuscript with input from the other authors.

Corresponding author

Correspondence to Nelson Spruston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 5441 kb)

Supplementary Movie 1

Simple model of axonal action potential propagation in a stylized axon. (MOV 5750 kb)

Supplementary Movie 2

Model of axonal action potential propagation in a full morphological model. (MOV 11319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheffield, M., Best, T., Mensh, B. et al. Slow integration leads to persistent action potential firing in distal axons of coupled interneurons. Nat Neurosci 14, 200–207 (2011). https://doi.org/10.1038/nn.2728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing