Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling

This article has been updated

Abstract

Adrenergic signaling has important roles in synaptic plasticity and metaplasticity. However, the underlying mechanisms of these functions remain poorly understood. We investigated the role of octopamine, the invertebrate counterpart of adrenaline and noradrenaline, in synaptic and behavioral plasticity in Drosophila. We found that an increase in locomotor speed induced by food deprivation was accompanied by an activity- and octopamine-dependent extension of octopaminergic arbors and that the formation and maintenance of these arbors required electrical activity. Growth of octopaminergic arbors was controlled by a cAMP- and CREB-dependent positive-feedback mechanism that required Octβ2R octopamine autoreceptors. Notably, this autoregulation was necessary for the locomotor response. In addition, octopamine neurons regulated the expansion of excitatory glutamatergic neuromuscular arbors through Octβ2Rs on glutamatergic motor neurons. Our results provide a mechanism for global regulation of excitatory synapses, presumably to maintain synaptic and behavioral plasticity in a dynamic range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Food-deprivation increase in larval locomotion is correlated with synaptopod formation at type II arbors.
Figure 2: Stepwise development of synaptopods.
Figure 3: Electrical activity and octopamine regulate the extension of synaptopods.
Figure 4: Innervation and maintenance of type II arbors depends on activity.
Figure 5: Synaptopod extension is regulated by the cAMP pathway and requires new protein synthesis and CREB.
Figure 6: Presynaptic Octβ2R autoreceptors, but not OAMB receptors, regulate the growth of type II arbors.
Figure 7: Type II motor neurons regulate the growth of type I arbors.

Similar content being viewed by others

Change history

  • 16 January 2011

    In the version of this article initially published online, an error was made on page 2, left column, third paragraph, sixth line. The genotype 'tbhnM19' should read 'tbhnM18'. In the Online Methods, left column, first paragraph, fifth line, the genotype 'tbhnM189' should read 'tbhnM18 (ref. 9)'. Finally, in the Online Methods, right column, seventh paragraph, fourth line, the abbreviation 'Drc' should read 'Dcr'. These errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Murchison, C.F. et al. A distinct role for norepinephrine in memory retrieval. Cell 117, 131–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Hu, H. et al. Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131, 160–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Kuzmiski, J.B., Pittman, Q.J. & Bains, J.S. Metaplasticity of hypothalamic synapses following in vivo challenge. Neuron 62, 839–849 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balfanz, S., Strunker, T., Frings, S. & Baumann, A. A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J. Neurochem. 93, 440–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Hammer, M. & Menzel, R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5, 146–156 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schroll, C. et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Schwaerzel, M. et al. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci. 23, 10495–10502 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, C. & Rao, Y. A subset of octopaminergic neurons are important for Drosophila aggression. Nat. Neurosci. 11, 1059–1067 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Monastirioti, M., Linn, C.E. Jr. & White, K. Characterization of Drosophila tyramine beta-hydroxylase gene and isolation of mutant flies lacking octopamine. J. Neurosci. 16, 3900–3911 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suo, S., Kimura, Y. & Van Tol, H.H. Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. J. Neurosci. 26, 10082–10090 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crocker, A., Shahidullah, M., Levitan, I.B. & Sehgal, A. Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron 65, 670–681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Breen, C.A. & Atwood, H.L. Octopamine—a neurohormone with presynaptic activity-dependent effects at crayfish neuromuscular junctions. Nature 303, 716–718 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Monastirioti, M. et al. Octopamine immunoreactivity in the fruit fly Drosophila melanogaster. J. Comp. Neurol. 356, 275–287 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schuster, C.M., Davis, G.W., Fetter, R.D. & Goodman, C.S. Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron 17, 655–667 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Marqués, G. & Zhang, B. Retrograde signaling that regulates synaptic development and function at the Drosophila neuromuscular junction. Int. Rev. Neurobiol. 75, 267–285 (2006).

    Article  PubMed  Google Scholar 

  16. Korkut, C. & Budnik, V. WNTs tune up the neuromuscular junction. Nat. Rev. Neurosci. 10, 627–634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steinert, J.R. et al. Experience-dependent formation and recruitment of large vesicles from reserve pool. Neuron 50, 723–733 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Sigrist, S.J. et al. Experience-dependent strengthening of Drosophila neuromuscular junctions. J. Neurosci. 23, 6546–6556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Budnik, V., Zhong, Y. & Wu, C.F. Morphological plasticity of motor axons in Drosophila mutants with altered excitability. J. Neurosci. 10, 3754–3768 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ataman, B. et al. Rapid activity-dependent modifications in synaptic structure and function require bidirectional wnt signaling. Neuron 57, 705–718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saraswati, S., Fox, L.E., Soll, D.R. & Wu, C.F. Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. J. Neurobiol. 58, 425–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Davenport, A.P. & Evans, P.D. Changes in haemolymph octopamine levels associated with food deprivation in the locust, Schistocerca gregaria. Physiol. Entomol. 9, 269–274 (1984).

    Article  CAS  Google Scholar 

  23. Hardie, S.L., Zhang, J.X. & Hirsh, J. Trace amines differentially regulate adult locomotor activity, cocaine sensitivity, and female fertility in Drosophila melanogaster. Dev. Neurobiol. 67, 1396–1405 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Rasse, T.M. et al. Glutamate receptor dynamics organizing synapse formation in vivo. Nat. Neurosci. 8, 898–905 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Fouquet, W. et al. Maturation of active zone assembly by Drosophila Bruchpilot. J. Cell Biol. 186, 129–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mosca, T.J., Carrillo, R.A., White, B.H. & Keshishian, H. Dissection of synaptic excitability phenotypes by using a dominant-negative Shaker K+ channel subunit. Proc. Natl. Acad. Sci. USA 102, 3477–3482 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. White, B.H. et al. Targeted attenuation of electrical activity in Drosophila using a genetically modified K(+) channel. Neuron 31, 699–711 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Paradis, S., Sweeney, S.T. & Davis, G.W. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30, 737–749 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. McGuire, S.E., Mao, Z. & Davis, R.L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, pl6 (2004).

    PubMed  Google Scholar 

  32. Han, K.A., Millar, N.S. & Davis, R.L. A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J. Neurosci. 18, 3650–3658 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhong, Y., Budnik, V. & Wu, C.F. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade. J. Neurosci. 12, 644–651 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schröder-Lang, S. et al. Fast manipulation of cellular cAMP level by light in vivo. Nat. Methods 4, 39–42 (2007).

    Article  PubMed  Google Scholar 

  35. Benito, E. & Barco, A. CREB's control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci. 33, 230–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Perazzona, B., Isabel, G., Preat, T. & Davis, R.L. The role of cAMP response element-binding protein in Drosophila long-term memory. J. Neurosci. 24, 8823–8828 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, H.G. et al. Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster. Dev. Biol. 264, 179–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Schuster, C.M., Davis, G.W., Fetter, R.D. & Goodman, C.S. Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17, 641–654 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. O'Dell, T.J., Connor, S.A., Gelinas, J.N. & Nguyen, P.V. Viagra for your synapses: enhancement of hippocampal long-term potentiation by activation of beta-adrenergic receptors. Cell. Signal. 22, 728–736 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Roeder, T. Tyramine and octopamine: ruling behavior and metabolism. Annu. Rev. Entomol. 50, 447–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Howell, K.M. & Evans, P.D. The characterization of presynaptic octopamine receptors modulating octopamine release from an identified neurone in the locust. J. Exp. Biol. 201, 2053–2060 (1998).

    CAS  PubMed  Google Scholar 

  42. Floresco, S.B. et al. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6, 968–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Aamodt, S.M. & Constantine-Paton, M. The role of neural activity in synaptic development and its implications for adult brain function. Adv. Neurol. 79, 133–144 (1999).

    CAS  PubMed  Google Scholar 

  44. Landgraf, M., Bossing, T., Technau, G.M. & Bate, M. The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. J. Neurosci. 17, 9642–9655 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takizawa, E., Komatsu, A. & Tsujimura, H. Identification of common excitatory motoneurons in Drosophila melanogaster larvae. Zoolog. Sci. 24, 504–513 (2007).

    Article  PubMed  Google Scholar 

  46. Nagaya, Y., Kutsukake, M., Chigusa, S.I. & Komatsu, A. A trace amine, tyramine, functions as a neuromodulator in Drosophila melanogaster. Neurosci. Lett. 329, 324–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Kutsukake, M., Komatsu, A., Yamamoto, D. & Ishiwa-Chigusa, S. A tyramine receptor gene mutation causes a defective olfactory behavior in Drosophila melanogaster. Gene 245, 31–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Nishikawa, K. & Kidokoro, Y. Octopamine inhibits synaptic transmission at the larval neuromuscular junction in Drosophila melanogaster. Brain Res. 837, 67–74 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. McNabb, S.L. et al. Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila. Neuron 19, 813–823 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Cheung, U.S., Shayan, A.J., Boulianne, G.L. & Atwood, H.L. Drosophila larval neuromuscular junction's responses to reduction of cAMP in the nervous system. J. Neurobiol. 40, 1–13 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Yoshihara, S. Speese, Y. Fuentes-Medel and C. Korkut for comments on the manuscript, C. Brewer for assistance with data analysis and the UMass Amherst antibody facility for production of the TBH antibody. This work was supported by US National Institutes of Health grants R01 MH0700000 to V.B., MH09883 to S.W., MH081982 to S.W. and GM084491 to M.J.A. M.J.A. was also supported by the Bill & Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.C.K. designed and performed most experiments and contributed to manuscript writing; J.A. contributed to tool development, electrophysiology, experimental design and manuscript writing; R.B. performed RT-PCR and some immunocytochemistry; S.W., S.D. and R.B. generated, characterized and validated PACα function; M.J.A. helped with the design of the TBH antibody; and V.B. directed the project and wrote the manuscript in collaboration with A.C.K. and J.A.

Corresponding author

Correspondence to Vivian Budnik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 894 kb)

Supplementary Movie 1

Dynamics of natural synaptopods at type-II arbors. (MOV 18 kb)

Supplementary Movie 2

Synaptopods develop ball-shaped varicosities. (MOV 252 kb)

Supplementary Movie 3

Secondary synaptopod formation on a varicosity. (MOV 109 kb)

Supplementary Movie 4

Induction of synaptopod formation upon acute increase in cAMP levels. (MOV 1384 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koon, A., Ashley, J., Barria, R. et al. Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling. Nat Neurosci 14, 190–199 (2011). https://doi.org/10.1038/nn.2716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing