Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

APCCdh1 mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity

Abstract

Homeostatic plasticity is crucial for maintaining neuronal output by counteracting unrestrained changes in synaptic strength. Chronic elevation of synaptic activity by bicuculline reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs), but the underlying mechanisms of this effect remain unclear. We found that activation of EphA4 resulted in a decrease in synaptic and surface GluR1 and attenuated mEPSC amplitude through a degradation pathway that requires the ubiquitin proteasome system (UPS). Elevated synaptic activity resulted in increased tyrosine phosphorylation of EphA4, which associated with the ubiquitin ligase anaphase-promoting complex (APC) and its activator Cdh1 in neurons in a ligand-dependent manner. APCCdh1 interacted with and targeted GluR1 for proteasomal degradation in vitro, whereas depletion of Cdh1 in neurons abolished the EphA4-dependent downregulation of GluR1. Knockdown of EphA4 or Cdh1 prevented the reduction in mEPSC amplitude in neurons that was a result of chronic elevated activity. Our results define a mechanism by which EphA4 regulates homeostatic plasticity through an APCCdh1-dependent degradation pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of EphA4 reduces synaptic strength.
Figure 2: Ephrin-A1 downregulates the expression of GluR1 at synapses through activation of EphA4.
Figure 3: Chronic elevation of synaptic activity reduces GluR1 expression in an EphA4-dependent manner.
Figure 4: Ephrin-A-EphA4 signaling reduces GluR1 expression by a proteasome-dependent pathway.
Figure 5: E3 ubiquitin ligase complex APCCdh1 interacts with EphA4.
Figure 6: Polyubiquitination and degradation of GluR1 requires APCCdh1.
Figure 7: Reduction of synaptic strength by ephrin-A1 or chronic treatment of bicuculline depends on APCCdh1-dependent proteasome degradation pathway.

Similar content being viewed by others

References

  1. Turrigiano, G.G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Shepherd, J.D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stellwagen, D. & Malenka, R.C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Bingol, B. & Schuman, E.M. Synaptic protein degradation by the ubiquitin proteasome system. Curr. Opin. Neurobiol. 15, 536–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Yi, J.J. & Ehlers, M.D. Ubiquitin and protein turnover in synapse function. Neuron 47, 629–632 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Haglund, K., Di Fiore, P.P. & Dikic, I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598–603 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Ciechanover, A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ. 12, 1178–1190 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, Y., Hegde, A.N. & Martin, K.C. The ubiquitin proteasome system functions as an inhibitory constraint on synaptic strengthening. Curr. Biol. 13, 887–898 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Patrick, G.N., Bingol, B., Weld, H.A. & Schuman, E.M. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr. Biol. 13, 2073–2081 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Jordan, B.A. et al. Identification and verification of novel rodent postsynaptic density proteins. Mol. Cell. Proteomics 3, 857–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Li, K.W. et al. Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J. Biol. Chem. 279, 987–1002 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Burbea, M., Dreier, L., Dittman, J.S., Grunwald, M.E. & Kaplan, J.M. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 35, 107–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Juo, P. & Kaplan, J.M. The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Curr. Biol. 14, 2057–2062 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. van Roessel, P., Elliott, D.A., Robinson, I.M., Prokop, A. & Brand, A.H. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119, 707–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Colledge, M. et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40, 595–607 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, D. et al. Na,K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis. J. Neurosci. 29, 4498–4511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pasquale, E.B. Eph-Ephrin bidirectional signaling in physiology and disease. Cell 133, 38–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Klein, R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat. Neurosci. 12, 15–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Deininger, K. et al. The Rab5 guanylate exchange factor Rin1 regulates endocytosis of the EphA4 receptor in mature excitatory neurons. Proc. Natl. Acad. Sci. USA 105, 12539–12544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y. & Pasquale, E.B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6, 153–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Fu, W.Y. et al. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat. Neurosci. 10, 67–76 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Penzes, P. et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Henkemeyer, M., Itkis, O.S., Ngo, M., Hickmott, P.W. & Ethell, I.M. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J. Cell Biol. 163, 1313–1326 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dalva, M.B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Takasu, M.A., Dalva, M.B., Zigmond, R.E. & Greenberg, M.E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Wierenga, C.J., Ibata, K. & Turrigiano, G.G. Postsynaptic expression of homeostatic plasticity at neocortical synapses. J. Neurosci. 25, 2895–2905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O'Brien, R.J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Malinow, R. AMPA receptor trafficking and long-term potentiation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 707–714 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Cheng, K. et al. Pctaire1 interacts with p35 and is a novel substrate for Cdk5/p35. J. Biol. Chem. 277, 31988–31993 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Castro, A., Bernis, C., Vigneron, S., Labbe, J.C. & Lorca, T. The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene 24, 314–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Konishi, Y., Stegmuller, J., Matsuda, T., Bonni, S. & Bonni, A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science 303, 1026–1030 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Gieffers, C., Peters, B.H., Kramer, E.R., Dotti, C.G. & Peters, J.M. Expression of the CDH1-associated form of the anaphase-promoting complex in postmitotic neurons. Proc. Natl. Acad. Sci. USA 96, 11317–11322 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kraft, C., Vodermaier, H.C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J.M. The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol. Cell 18, 543–553 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Kato, A., Rouach, N., Nicoll, R.A. & Bredt, D.S. Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc. Natl. Acad. Sci. USA 102, 5600–5605 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lim, K.L. et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci. 25, 2002–2009 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matyskiela, M.E., Rodrigo-Brenni, M.C. & Morgan, D.O. Mechanisms of ubiquitin transfer by the anaphase-promoting complex. J. Biol. 8, 92 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pozo, K. & Goda, Y. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66, 337–351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lissin, D.V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95, 7097–7102 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. O'Brien, R.J., Lau, L.F. & Huganir, R.L. Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr. Opin. Neurobiol. 8, 364–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Seeburg, D.P., Feliu-Mojer, M., Gaiottino, J., Pak, D.T. & Sheng, M. Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron 58, 571–583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ang, X.L., Seeburg, D.P., Sheng, M. & Harper, J.W. Regulation of postsynaptic RapGAP SPAR by Polo-like kinase 2 and the SCFbeta-TRCP ubiquitin ligase in hippocampal neurons. J. Biol. Chem. 283, 29424–29432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Helton, T.D., Otsuka, T., Lee, M.C., Mu, Y. & Ehlers, M.D. Pruning and loss of excitatory synapses by the parkin ubiquitin ligase. Proc. Natl. Acad. Sci. USA 105, 19492–19497 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Murthy, V.N., Schikorski, T., Stevens, C.F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Burrone, J., O'Byrne, M. & Murthy, V.N. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420, 414–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Listovsky, T. et al. Mammalian Cdh1/Fzr mediates its own degradation. EMBO J. 23, 1619–1626 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Sala, C. et al. Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J. Neurosci. 23, 6327–6337 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Bartlett for EphA4−/− mice, R. Huganir for GluR1 antibodies and the GluR1 4KR mutant expression construct, R. Malinow for the GluR1-GFP construct, J. Chamberlain for the mouse muscle cDNA library, L. Shi, W. Chau, K. Kong, X.-N. Li, W. Fang, E. Cheung, B. Butt and C. Kwong for technical assistance, and members of the Ip laboratory for discussions. This study was supported in part by the Research Grants Council of Hong Kong SAR (HKUST, 6444/06M, 661007, 661109, 1/06C and 6/CRF/08), the Area of Excellence Scheme of the University Grants Committee (AoE/B-15/01) and the Hong Kong Jockey Club. N.Y. Ip and K.-O. Lai were recipients of the Croucher Foundation Senior Research Fellowship and Croucher Foundation Fellowship, respectively.

Author information

Authors and Affiliations

Authors

Contributions

N.Y.I. supervised the project. A.K.Y.F., K.-W.H., W.-Y.F., K.-O.L. and N.Y.I. designed the experiments. K.-W.H., W.-Y.F., Y.C. and K.-O.L. conducted the majority of experiments. A.K.Y.F., K.-W.H., W.-Y.F., Y.C., K.-O.L. and N.Y.I. did the data analyses. J.X. designed and did the data analyses on the electrophysiology experiment and C.S. performed electrophysiology experiment. A.K.Y.F., K.-O.L. and N.Y.I. wrote the manuscript.

Corresponding author

Correspondence to Nancy Y Ip.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, A., Hung, KW., Fu, WY. et al. APCCdh1 mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat Neurosci 14, 181–189 (2011). https://doi.org/10.1038/nn.2715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing