Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels

Abstract

It is well established that the auxiliary Cavβ subunit regulates calcium channel density in the plasma membrane, but the cellular mechanism by which this occurs has remained unclear. We found that the Cavβ subunit increased membrane expression of Cav1.2 channels by preventing the entry of the channels into the endoplasmic reticulum–associated protein degradation (ERAD) complex. Without Cavβ, Cav1.2 channels underwent robust ubiquitination by the RFP2 ubiquitin ligase and interacted with the ERAD complex proteins derlin-1 and p97, culminating in targeting of the channels to the proteasome for degradation. On treatment with the proteasomal inhibitor MG132, Cavβ-free channels were rescued from degradation and trafficked to the plasma membrane. The coexpression of Cavβ interfered with ubiquitination and targeting of the channel to the ERAD complex, thereby facilitating export from the endoplasmic reticulum and promoting expression on the cell surface. Thus, Cavββ regulates the ubiquitination and stability of the calcium channel complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cavβ subunits increase surface and total expression of Cav1.2 channels.
Figure 2: Determinants of endoplasmic reticulum retention of intracelllular regions of HVA calcium channels.
Figure 3: MG132 and Cavβ both increase surface expression of Cav1.2 channels.
Figure 4: Cav1.2 channels interact with the ERAD protein complex in the absence of Cavβ.
Figure 5: The Cavβ subunit prevents ubiquitination of Cav1.2 channels.
Figure 6: Cav1.2 channels associate with the RING domain ubiquitin ligase RFP2.
Figure 7: Dominant-negative RFP2 increases barium current density, and enhances surface expression of Cav1.2 channels in hippocampal neurons.

Similar content being viewed by others

References

  1. Berridge, M.J., Bootman, M.D. & Roderick, H.L. Calcium signaling: dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  2. Dolmetsch, R.E., Pajvani, U., Fife, K., Spotts, J.M. & Greenberg, M.E. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294, 333–339 (2001).

    Article  CAS  Google Scholar 

  3. Catterall, W.A., Perez-Reyes, E., Snutch, T.P. & Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411–425 (2005).

    Article  CAS  Google Scholar 

  4. Birnbaumer, L. et al. Structures and functions of calcium channel beta subunits. J. Bioenerg. Biomembr. 30, 357–375 (1998).

    Article  CAS  Google Scholar 

  5. Dolphin, A.C. Beta subunits of voltage-gated calcium channels. J. Bioenerg. Biomembr. 35, 599–620 (2003).

    Article  CAS  Google Scholar 

  6. Hidalgo, P. & Neely, A. Multiplicity of protein interactions and functions of the voltage-gated calcium channel beta-subunit. Cell Calcium 42, 389–396 (2007).

    Article  CAS  Google Scholar 

  7. Pragnell, M. et al. Calcium channel beta-subunit binds to a conserved motif in the I–II cytoplasmic linker of the alpha 1-subunit. Nature 368, 67–70 (1994).

    Article  CAS  Google Scholar 

  8. Opatowsky, Y., Chen, C.C., Campbell, K.P. & Hirsch, J.A. Structural analysis of the voltage-dependent calcium channel beta subunit functional core and its complex with the alpha 1 interaction domain. Neuron 42, 387–399 (2004).

    Article  CAS  Google Scholar 

  9. Chen, Y.H. et al. Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels. Nature 429, 675–680 (2004).

    Article  CAS  Google Scholar 

  10. Van Petegem, F., Clark, K.A., Chatelain, F.C. & Minor, D.L. Jr. Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 429, 671–675 (2004).

    Article  CAS  Google Scholar 

  11. Gregg, R.G. et al. Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation-contraction coupling. Proc. Natl. Acad. Sci. USA 93, 13961–13966 (1996).

    Article  CAS  Google Scholar 

  12. Weissgerber, P. et al. Reduced cardiac L-type Ca2+ current in Ca(V)beta2−/− embryos impairs cardiac development and contraction with secondary defects in vascular maturation. Circ. Res. 99, 749–757 (2006).

    Article  CAS  Google Scholar 

  13. Burgess, D.L., Jones, J.M., Meisler, M.H. & Noebels, J.L. Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 88, 385–392 (1997).

    Article  CAS  Google Scholar 

  14. Bichet, D. et al. The I–II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 25, 177–190 (2000).

    Article  CAS  Google Scholar 

  15. Maltez, J.M., Nunziato, D.A., Kim, J. & Pitt, G.S. Essential Ca(V)beta modulatory properties are AID-independent. Nat. Struct. Mol. Biol. 12, 372–377 (2005).

    Article  CAS  Google Scholar 

  16. Zerangue, N., Schwappach, B., Jan, Y.N. & Jan, L.Y. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22, 537–548 (1999).

    Article  CAS  Google Scholar 

  17. Zerangue, N. et al. Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells. Proc. Natl. Acad. Sci. USA 98, 2431–2436 (2001).

    Article  CAS  Google Scholar 

  18. Römisch, K. Endoplasmic reticulum–associated degradation. Annu. Rev. Cell Dev. Biol. 21, 435–456 (2005).

    Article  Google Scholar 

  19. Lilley, B.N. & Ploegh, H.L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004).

    Article  CAS  Google Scholar 

  20. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T.A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    Article  CAS  Google Scholar 

  21. Sun, F. et al. Derlin-1 promotes the efficient degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR folding mutants. J. Biol. Chem. 281, 36856–36863 (2006).

    Article  CAS  Google Scholar 

  22. Tsai, B., Ye, Y. & Rapoport, T.A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol. 3, 246–255 (2002).

    Article  CAS  Google Scholar 

  23. Abriel, H. & Staub, O. Ubiquitylation of ion channels. Physiology (Bethesda) 20, 398–407 (2005).

    CAS  Google Scholar 

  24. Obermair, G.J. et al. Reciprocal interactions regulate targeting of calcium channel beta subunits and membrane expression of alpha1 subunits in cultured hippocampal neurons. J. Biol. Chem. 285, 5776–5791 (2010).

    Article  CAS  Google Scholar 

  25. Leroy, J. et al. Interaction via a key tryptophan in the I–II linker of N-type calcium channels is required for beta1 but not for palmitoylated beta2, implicating an additional binding site in the regulation of channel voltage-dependent properties. J. Neurosci. 25, 6984–6996 (2005).

    Article  CAS  Google Scholar 

  26. Deshaies, R.J. & Joazeiro, C.A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  Google Scholar 

  27. Lerner, M. et al. The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD. Mol. Biol. Cell 18, 1670–1682 (2007).

    Article  CAS  Google Scholar 

  28. Yasuda, T. et al. Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells. Eur. J. Neurosci. 20, 1–13 (2004).

    Article  Google Scholar 

  29. Baranova, A. et al. Distinct organization of the candidate tumor suppressor gene RFP2 in human and mouse: multiple mRNA isoforms in both species- and human-specific antisense transcript RFP2OS. Gene 321, 103–112 (2003).

    Article  CAS  Google Scholar 

  30. Corcoran, M.M. et al. DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse. Genes Chromosom. Cancer 40, 285–297 (2004).

    Article  CAS  Google Scholar 

  31. Younger, J.M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582 (2006).

    Article  CAS  Google Scholar 

  32. Wang, B. et al. BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTRDeltaF508 via the derlin-1 complex. Cell 133, 1080–1092 (2008).

    Article  CAS  Google Scholar 

  33. Gao, Y. et al. Role of S3 and S4 transmembrane domain charged amino acids in channel biogenesis and gating of KCa2.3 and KCa3.1. J. Biol. Chem. 283, 9049–9059 (2008).

    Article  CAS  Google Scholar 

  34. Vance, C.L. et al. Differential expression and association of calcium channel alpha1B and beta subunits during rat brain ontogeny. J. Biol. Chem. 273, 14495–14502 (1998).

    Article  CAS  Google Scholar 

  35. Lie, A.A. et al. Distribution of voltage-dependent calcium channel beta subunits in the hippocampus of patients with temporal lobe epilepsy. Neuroscience 93, 449–456 (1999).

    Article  CAS  Google Scholar 

  36. Hullin, R. et al. Increased expression of the auxiliary beta2-subunit of ventricular L-type Ca2+ channels leads to single-channel activity characteristic of heart failure. PLoS ONE 2, e292 (2007).

    Article  Google Scholar 

  37. Altier, C. et al. ORL1 receptor-mediated internalization of N-type calcium channels. Nat. Neurosci. 9, 31–40 (2006).

    Article  CAS  Google Scholar 

  38. Altier, C. et al. Trafficking of L-type calcium channels mediated by the postsynaptic scaffolding protein AKAP79. J. Biol. Chem. 277, 33598–33603 (2002).

    Article  CAS  Google Scholar 

  39. Kisilevsky, A.E. et al. D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry. Neuron 58, 557–570 (2008).

    Article  CAS  Google Scholar 

  40. Li, Q. et al. A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J. Neurosci. 24, 4070–4081 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Striessnig, S. Ferguson, J. Stutts, B. Schwappach, E. Bourinet and T. Snutch for cDNA constructs, and E. Stanley for help with the ICQ colocalization analysis. This work was supported by operating grants to G.W.Z. from the Heart and Stroke Foundation of Alberta, the Northwest Territories and Nunavut, and the Canadian Institutes for Health Research. G.W.Z. is a Scientist of the Alberta Heritage Foundation for Medical Research (AHFMR) and a Canada Research Chair in Molecular Neurobiology. H.Y. is supported by an AFHMR fellowship and B.S. is supported by an AHFMR studentship.

Author information

Authors and Affiliations

Authors

Contributions

C.A., A.G.-C. and G.W.Z. designed the study and wrote the manuscript. G.W.Z. supervised the study. C.A., A.G.-C., B.S., H.Y. and L.C. performed experiments and data analysis. J.W. and H.W.T. contributed to molecular biology.

Corresponding author

Correspondence to Gerald W Zamponi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 6085 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altier, C., Garcia-Caballero, A., Simms, B. et al. The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci 14, 173–180 (2011). https://doi.org/10.1038/nn.2712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing