Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tuning arousal with optogenetic modulation of locus coeruleus neurons

Abstract

Neural activity in the noradrenergic locus coeruleus correlates with periods of wakefulness and arousal. However, it is unclear whether tonic or phasic activity in these neurons is necessary or sufficient to induce transitions between behavioral states and to promote long-term arousal. Using optogenetic tools in mice, we found that there is a frequency-dependent, causal relationship among locus coeruleus firing, cortical activity, sleep-to-wake transitions and general locomotor arousal. We also found that sustained, high-frequency stimulation of the locus coeruleus at frequencies of 5 Hz and above caused reversible behavioral arrests. These results suggest that the locus coeruleus is finely tuned to regulate organismal arousal and that bursts of noradrenergic overexcitation cause behavioral attacks that resemble those seen in people with neuropsychiatric disorders.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Specific and efficient functional expression of optogenetic transgenes in locus coeruleus neurons.
Figure 2: Photoinhibition of locus coeruleus neurons causes a reduction in the duration of wakefulness.
Figure 3: Photostimulation of locus coeruleus neurons causes immediate sleep-to-wake transitions.
Figure 4: Long-term tonic versus phasic stimulation of the locus coeruleus causes differential promotion of arousal.
Figure 5: High-frequency photostimulation of the locus coeruleus causes reversible behavioral arrests.

References

  1. Aston-Jones, G. & Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    CAS  Article  PubMed  Google Scholar 

  2. Berridge, C.W. & Waterhouse, B.D. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84 (2003).

    Article  PubMed  Google Scholar 

  3. Foote, S.L., Bloom, F.E. & Aston-Jones, G. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol. Rev. 63, 844–914 (1983).

    CAS  Article  PubMed  Google Scholar 

  4. Saper, C.B., Scammell, T.E. & Lu, J. Hypothalamic regulation of sleep and circadian rhyhms. Nature 437, 1257–1263 (2005).

    CAS  Article  PubMed  Google Scholar 

  5. Sara, S.J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 (2009).

    CAS  Article  PubMed  Google Scholar 

  6. Aston-Jones, G. & Bloom, F.E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1, 876–886 (1981).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Aston-Jones, G. & Bloom, F.E. Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1, 887–900 (1981).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Hobson, J.A., McCarley, R.W. & Wyzinski, P.W. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189, 55–58 (1975).

    CAS  Article  PubMed  Google Scholar 

  9. Foote, S.L., Aston-Jones, G. & Bloom, F.E. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl. Acad. Sci. USA 77, 3033–3037 (1980).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Jones, B.E., Harper, S.T. & Halaris, A.E. Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Res. 124, 473–496 (1977).

    CAS  Article  PubMed  Google Scholar 

  11. Lidbrink, P. The effect of lesions of ascending noradrenaline pathways on sleep and waking in the rat. Brain Res. 74, 19–40 (1974).

    CAS  Article  PubMed  Google Scholar 

  12. Blanco-Centurion, C., Gerashchenko, D. & Shiromani, P.J. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J. Neurosci. 27, 14041–14048 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Hunsley, M.S. & Palmiter, R.D. Norepinephrine-deficient mice exhibit normal sleep-wake states but have shorter sleep latency after mild stress and low doses of amphetamine. Sleep 26, 521–526 (2003).

    PubMed  Google Scholar 

  14. Berridge, C.W. & Espana, R.A. Synergistic sedative effects of noradrenergic alpha(1)- and beta-receptor blockade on forebrain electroencephalographic and behavioral indices. Neuroscience 99, 495–505 (2000).

    CAS  Article  PubMed  Google Scholar 

  15. De Sarro, G.B., Ascioti, C., Froio, F., Libri, V. & Nistico, F. Evidence that locus coeruleus is the site where clonidine and drugs acting at alpha 1- and alpha 2-adrenoceptors affect sleep and arousal mechanisms. Br. J. Pharmacol. 90, 675–685 (1987).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Flicker, C. & Geyer, M.A. The hippocampus as a possible site of action for increased locomotion during intracerebral infusions of norepinephrine. Behav. Neural Biol. 34, 421–426 (1982).

    CAS  Article  PubMed  Google Scholar 

  17. Segal, D.S. & Mandell, A.J. Behavioral activation of rats during intraventricular infusion of norepinephrine. Proc. Natl. Acad. Sci. USA 66, 289–293 (1970).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Berridge, C.W. & Foote, S.L. Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J. Neurosci. 11, 3135–3145 (1991).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, F., Aravanis, A.M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577–581 (2007).

    CAS  Article  PubMed  Google Scholar 

  21. Adamantidis, A., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Carter, M.E., Adamantidis, A., Ohtsu, H., Deisseroth, K. & de Lecea, L. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J. Neurosci. 29, 10939–10949 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Gradinaru, V., Thompson, K.R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    CAS  Article  PubMed  Google Scholar 

  25. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Tsai, H.C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Lindeberg, J. et al. Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus. Genesis 40, 67–73 (2004).

    CAS  Article  PubMed  Google Scholar 

  29. Paxinos, G. & Franklin, K. The Mouse Brain in Stereotaxic Coordinates. 2nd edn. (Academic, New York, 2001).

  30. Shipley, M.T. et al. Dendrites of locus coeruleus neurons extend preferentially into two pericoerulear zones. J. Comp. Neurol. 365, 56–68 (1996).

    CAS  Article  PubMed  Google Scholar 

  31. Bourgin, P. et al. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J. Neurosci. 20, 7760–7765 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Valentino, R. et al. Corticotropin-releasing factor innervation of the locus coeruleus region: distribution of fibers and sources of input. Neuroscience 48, 689–705 (1992).

    CAS  Article  PubMed  Google Scholar 

  33. van Bockstaele, E.J. et al. Anatomic basis for differential regulation of the rostrolateral peri-locus coeruleus region by limbic afferents. Biol. Psychiatry 46, 1352–1363 (1999).

    CAS  Article  PubMed  Google Scholar 

  34. Jodo, E., Chiang, C. & Aston-Jones, G. Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coreuleus neurons. Neuroscience 83, 63–79 (1998).

    CAS  Article  PubMed  Google Scholar 

  35. Luquet, S., Perez, F.A., Hnasko, T.S. & Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice, but can be ablated in neonates. Science 310, 683–685 (2005).

    CAS  Article  PubMed  Google Scholar 

  36. Wu, Q., Boyle, M.P. & Palmiter, R.D. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137, 1225–1234 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Szot, P. et al. A comprehensive analysis of the effect of DSP4 on the locus coeruleus noradrenergic system in the rat. Neuropharmacology 166, 279–291 (2010).

    CAS  Google Scholar 

  38. Parmentier, R. et al. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J. Neurosci. 22, 7695–7711 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. McGinty, D.J. & Harper, R.M. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res. 101, 569–575 (1976).

    CAS  Article  PubMed  Google Scholar 

  40. Steriade, M. Acetycholine systems and rhythmic activities during the waking-sleep cycle. Prog. Brain Res. 145, 179–196 (2004).

    CAS  Article  PubMed  Google Scholar 

  41. Boucetta, S. & Jones, B.E. Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencelphalic tegmentum of urethane-anesthetized rats. J. Neurosci. 29, 4664–4674 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Hassani, O.K., Lee, M.G., Henny, P. & Jones, B.E. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J. Neurosci. 29, 11828–11840 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Arnsten, A.F. Stress signaling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10, 410–422 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Ramos, B.P. & Arnsten, A. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol. Ther. 113, 523–536 (2007).

    CAS  Article  PubMed  Google Scholar 

  45. Bouret, S. & Sara, S.J. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 28, 574–582 (2005).

    CAS  Article  PubMed  Google Scholar 

  46. Wu, M.F. et al. Activity of dorsal raphe cells across the sleep-waking cycle and during cataplexy in narcoleptic dogs. J. Physiol. (Lond.) 554, 202–215 (2004).

    CAS  Article  Google Scholar 

  47. Lai, Y.Y., Kodama, T. & Siegel, J.M. Changes in monoamine release in the ventral horn and hypoglossal nucleus linked to pontine inhibition of muscle tone: an in vivo microdialysis study. J. Neurosci. 21, 7384–7391 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Kodama, T., Lai, Y.Y. & Siegel, J.M. Changes in inhibitory amino acid release linked to pontine-induced atonia: an in vivo microdialysis study. J. Neurosci. 23, 1548–1554 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Scammell, T.E. et al. A consensus definition of cataplexy in mouse models of narcolepsy. Sleep 32, 111–116 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu, M.F. et al. Locus coeruleus neurons: cessation of activity during cataplexy. Neuroscience 91, 1389–1399 (1999).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the de Lecea laboratory for helpful advice and feedback, J. Shieh for assistance with confocal images, A. Hilgendorff for assistance with mouse cardiovascular measurements and S. Xie for access to custom-built SmartCages. M.E.C. received financial support from an NSF Graduate Research Fellowship and the US National Institutes of Health (NIH) National Research Service Award (F31MH83439). O.Y. is supported by a European Molecular Biology Organization long-term postdoctoral fellowship. S.C. is supported by the Excellent Young Researcher Overseas Visit Program (21-8162) of the Japan Society for the Promotion of Science. A.A. is supported by fellowships from the Fonds National de la Recherche Scientifique ('Charge de Recherche'), NIH (K99) and NARSAD. S.N. is supported by NIH grant R01MH072525. K.D. is supported by the National Science Foundation, National Institute of Mental Health, National Institute on Drug Abuse, and the McKnight, Coulter, Snyder, Albert Yu and Mary Bechmann, and Keck Foundations. L.d.L. is supported by the NIH (MH83702, MH87592, DA21880) and NARSAD.

Author information

Authors and Affiliations

Authors

Contributions

M.E.C. and L.d.L. designed the study and wrote the manuscript. M.E.C. performed or assisted with all experiments. O.Y. performed and analyzed electrophysiology experiments, S.C. performed HPLC analysis, and H.N. analyzed immunohistochemical co-expression data. A.A. and L.d.L. provided expertise on optogenetic and polysomnographic recording techniques, as well as substantial feedback on the manuscript. S.N., K.D. and L.d.L. provided equipment, reagents and critical feedback.

Corresponding author

Correspondence to Luis de Lecea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 8230 kb)

Supplementary Movie 1

Representative sleep-to-wake transition following photostimulation of locus coeruleus neurons during NREM sleep. Photostimulation condition was 10 ms pulses at 5 Hz for 5 s. (MOV 902 kb)

Supplementary Movie 2

Representative behavioral arrest following sustained, high-frequency photostimulation of locus coeruleus neurons with 10 ms pulses at 10 Hz. (MOV 3007 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carter, M., Yizhar, O., Chikahisa, S. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13, 1526–1533 (2010). https://doi.org/10.1038/nn.2682

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2682

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing