Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOX9 induces and maintains neural stem cells

Abstract

Neural stem cells (NSCs) are uncommitted cells of the CNS defined by their multipotentiality and ability to self renew. We found these cells to not be present in substantial numbers in the CNS until after embryonic day (E) 10.5 in mouse and E5 in chick. This coincides with the induction of SOX9 in neural cells. Gain- and loss-of-function studies indicated that SOX9 was essential for multipotent NSC formation. Moreover, Sonic Hedgehog was able to stimulate precocious generation of NSCs by inducing Sox9 expression. SOX9 was also necessary for the maintenance of multipotent NSCs, as shown by in vivo fate mapping experiments in the adult subependymal zone and olfactory bulbs. In addition, loss of SOX9 led ependymal cells to adopt a neuroblast identity. These data identify a functional link between extrinsic and intrinsic mechanisms of NSCs specification and maintenance, and establish a central role for SOX9 in the process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acquisition of neurosphere forming ability in mouse and chick CNS and the effect of SHH signaling.
Figure 2: The expression of SOX9 coincides with the formation of NSCs.
Figure 3: Ectopic Sox9 can induce precocious neurosphere formation from embryonic CNS and increase neurosphere formation from the adult SEZ.
Figure 4: Sox9 is necessary for neurosphere formation.
Figure 5: Sox9 is necessary for neurosphere formation at E18.5, and required for multipotentiality in vitro and in vivo.
Figure 6: SOX9 and SOX10 mediate the effects of SHH signaling.
Figure 7: Sox9 is necessary for NSC function in vivo in the adult.
Figure 8: Sox9 is necessary for NSC function in vivo in the adult olfactory bulb.

Similar content being viewed by others

References

  1. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Spassky, N. et al. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J. Neurosci. 25, 10–18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doetsch, F. The glial identity of neural stem cells. Nat. Neurosci. 6, 1127–1134 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Reynolds, B.A. & Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Shi, Y., Sun, G., Zhao, C. & Stewart, R. Neural stem cell self-renewal. Crit. Rev. Oncol. Hematol. 65, 43–53 (2008).

    Article  PubMed  Google Scholar 

  7. Gulacsi, A.A. & Anderson, S.A. Beta-catenin-mediated Wnt signaling regulates neurogenesis in the ventral telencephalon. Nat. Neurosci. 11, 1383–1391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahn, S. & Joyner, A.L. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437, 894–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Lai, K., Kaspar, B.K., Gage, F.H. & Schaffer, D.V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. 6, 21–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Rowitch, D.H. et al. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J. Neurosci. 19, 8954–8965 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Avilion, A.A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conti, L. et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 3, e283 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pevny, L. & Placzek, M. SOX genes and neural progenitor identity. Curr. Opin. Neurobiol. 15, 7–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Wood, H.B. & Episkopou, V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev. 86, 197–201 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Favaro, R. et al. Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat. Neurosci. 12, 1248–1256 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Takanaga, H. et al. Gli2 Is A novel regulator of Sox2 expression in telencephalic neuroepithelial cells. Stem Cells 27, 165–174 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Stolt, C.C. & Wegner, M. SoxE function in vertebrate nervous system development. Int. J. Biochem. Cell Biol. 42, 437–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Cheung, M. & Briscoe, J. Neural crest development is regulated by the transcription factor Sox9. Development 130, 5681–5693 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Vidal, V.P. et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol. 15, 1340–1351 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Kordes, U., Cheng, Y.C. & Scotting, P.J. Sox group E gene expression distinguishes different types and maturational stages of glial cells in developing chick and mouse. Brain Res. Dev. Brain Res. 157, 209–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Sottile, V., Li, M. & Scotting, P.J. Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res. 1099, 8–17 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, L.C., Pastrana, E., Tavazoie, M. & Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stolt, C.C. et al. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17, 1677–1689 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stamataki, D., Ulloa, F., Tsoni, S.V., Mynett, A. & Briscoe, J. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev. 19, 626–641 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M. & Gage, F.H. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130, 391–399 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Akiyama, H. et al. Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proc. Natl. Acad. Sci. USA 101, 6502–6507 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Houston, C.S. et al. The campomelic syndrome: review, report of 17 cases, and follow-up on the currently 17-year-old boy first reported by Maroteaux et al in 1971. Am. J. Med. Genet. 15, 3–28 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Palma, V. & Ruiz i Altaba, A. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131, 337–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Anton, M. & Graham, F.L. Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J. Virol. 69, 4600–4606 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akiyama, H., Chaboissier, M.C., Martin, J.F., Schedl, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16, 2813–2828 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carlén, M. et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat. Neurosci. 12, 259–267 (2009).

    Article  PubMed  Google Scholar 

  35. Bien-Willner, G.A., Stankiewicz, P. & Lupski, J.R. SOX9cre1, a cis-acting regulatory element located 1.1 Mb upstream of SOX9, mediates its enhancement through the SHH pathway. Hum. Mol. Genet. 16, 1143–1156 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Cheung, M. et al. The transcriptional control of trunk neural crest induction, survival, and delamination. Dev. Cell 8, 179–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Kalani, M.Y. et al. Wnt-mediated self-renewal of neural stem/progenitor cells. Proc. Natl. Acad. Sci. USA 105, 16970–16975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonaguidi, M.A. et al. Noggin expands neural stem cells in the adult hippocampus. J. Neurosci. 28, 9194–9204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nowak, J.A., Polak, L., Pasolli, H.A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Poché, R.A., Furuta, Y., Chaboissier, M.C., Schedl, A. & Behringer, R.R. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Muller glial cell development. J. Comp. Neurol. 510, 237–250 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Okubo, T., Knoepfler, P.S., Eisenman, R.N. & Hogan, B.L. Nmyc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. Development 132, 1363–1374 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Takaki, M., Nakayama, S., Misawa, H., Nakagawa, T. & Kuniyasu, H. In vitro formation of enteric neural network structure in a gut-like organ differentiated from mouse embryonic stem cells. Stem Cells 24, 1414–1422 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Miller, S.J. et al. Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res. 66, 2584–2591 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Kordes, U. & Hagel, C. Expression of SOX9 and SOX10 in central neuroepithelial tumor. J. Neurooncol. 80, 151–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C.G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Briscoe, J., Chen, Y., Jessell, T.M. & Struhl, G. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol. Cell 7, 1279–1291 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Doetsch, F., Caille, I., Lim, D.A. & Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Schedl (INSERM U636, Nice) for the conditional Sox9 mutant mice, A. Nagy (Samuel Lunenfeld Research Institute) for the pCall2 vector, W.C.W. Chan for blastocyst injections and production of Z/Sox9 mice and T. Caspary (Emory University) for the Arl13b antibody. The CMV:cre construct was a gift from S. O'Gorman (Salk Institute). Thank you to S. Guioli, F. Guillemot and L. Reynard for critical reading of the manuscript, to C. Andoniadou for advice and training in the ways of neurosphere cultures, to W. Han Yau in the photographics department at NIMR for help with illustrations, to T. Matabanadzo and other biological services staff at NIMR for help with the mouse colonies and other members of our laboratories for discussion and encouragement. This work was supported by the UK Medical Research Council (U117512772), a US National Institutes of Health (National Institute of Biomedical Imaging and Bioengineering) Quantum Grant (R.L.-B. and C.E.S.), and grants from the Hong Kong Research Grants Council and the Hong Kong University Grants Council Area of Excellence Scheme (S.L.W. and K.S.E.C.).

Author information

Authors and Affiliations

Authors

Contributions

C.E.S., J.B. and R.L.-B. initiated the project. C.E.S. performed the in ovo electroporations, neurosphere culturing, immunohistochemistry, RT-PCR and quantification and data analysis of all the in vivo and in vitro experiments, except for the acquisition and analysis of the microarray data (C.C.). S.L.W., B.G. and K.S.E.C. generated the Z/Sox9 mice. M.C. supplied many of the constructs used in this study. A.S. performed the adenovirus injections and S.B. perfused the adult mice. M.-V.G.G. carried out the BrdU injections. C.E.S., R.L.-B. and J.B. were involved in the study design and wrote the manuscript.

Corresponding authors

Correspondence to Robin Lovell-Badge or James Briscoe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 1910 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, C., Wynn, S., Sesay, A. et al. SOX9 induces and maintains neural stem cells. Nat Neurosci 13, 1181–1189 (2010). https://doi.org/10.1038/nn.2646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing