Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity

Abstract

Dendritic spines undergo actin-based growth and shrinkage during synaptic plasticity, in which the actin depolymerizing factor (ADF)/cofilin family of actin-associated proteins are important. Elevated ADF/cofilin activities often lead to reduced spine size and immature spine morphology but can also enhance synaptic potentiation in some cases. Thus, ADF/cofilin may have distinct effects on postsynaptic structure and function. We found that ADF/cofilin-mediated actin dynamics regulated AMPA receptor (AMPAR) trafficking during synaptic potentiation, which was distinct from actin's structural role in spine morphology. Specifically, elevated ADF/cofilin activity markedly enhanced surface addition of AMPARs after chemically induced long-term potentiation (LTP), whereas inhibition of ADF/cofilin abolished AMPAR addition. We found that chemically induced LTP elicited a temporal sequence of ADF/cofilin dephosphorylation and phosphorylation that underlies AMPAR trafficking and spine enlargement. These findings suggest that temporally regulated ADF/cofilin activities function in postsynaptic modifications of receptor number and spine size during synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rapid addition of postsynaptic AMPA receptors to spine surface during chemical induction of LTP by TEA.
Figure 2: Long-term potentiation of synaptic function induced by TEA treatment.
Figure 3: Effects of actin drugs on TEA-induced AMPAR insertion.
Figure 4: Effects of Ser3 and pSer3 peptides on TEA-induced GluR1 addition.
Figure 5: Effects of different cofilin mutants on TEA-induced GluR1 addition.
Figure 6: Quantitative analyses of spine size in relation to SEP-GluR1 insertion for neurons expressing both mOrange and SEP-GluR1.
Figure 7: Effects of different cofilin mutants on TEA-induced spine enlargement.
Figure 8: Transient activation of cofilin and increase in actin barbed ends during LTP induction by TEA.

Similar content being viewed by others

References

  1. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Collingridge, G.L., Isaac, J.T. & Wang, Y.T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Song, I. & Huganir, R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Nimchinsky, E.A., Sabatini, B.L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Segal, M. Dendritic spines and long-term plasticity. Nat. Rev. Neurosci. 6, 277–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park, M. et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52, 817–830 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tada, T. & Sheng, M. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Cingolani, L.A. & Goda, Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9, 344–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hotulainen, P. & Hoogenraad, C.C. Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189, 619–629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bernstein, B.W. & Bamburg, J.R. ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 20, 187–195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Troys, M. et al. Ins and outs of ADF/cofilin activity and regulation. Eur. J. Cell Biol. 87, 649–667 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Rex, C.S. et al. Different Rho GTPase–dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol. 186, 85–97 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, Q., Homma, K.J. & Poo, M.M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, L.Y., Rex, C.S., Casale, M.S., Gall, C.M. & Lynch, G. Changes in synaptic morphology accompany actin signaling during LTP. J. Neurosci. 27, 5363–5372 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Sankaranarayanan, S., De Angelis, D., Rothman, J.E. & Ryan, T.A. The use of pHluorins for optical measurements of presynaptic activity. Biophys. J. 79, 2199–2208 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, D.T. & Huganir, R.L. PICK1 and phosphorylation of the glutamate receptor 2 (GluR2) AMPA receptor subunit regulates GluR2 recycling after NMDA receptor–induced internalization. J. Neurosci. 27, 13903–13908 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O.P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618–624 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Aniksztejn, L. & Ben-Ari, Y. Novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus. Nature 349, 67–69 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Ashby, M.C., Maier, S.R., Nishimune, A. & Henley, J.M. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J. Neurosci. 26, 7046–7055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Allison, D.W., Gelfand, V.I., Spector, I. & Craig, A.M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423–2436 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bubb, M.R., Senderowicz, A.M., Sausville, E.A., Duncan, K.L. & Korn, E.D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 269, 14869–14871 (1994).

    CAS  PubMed  Google Scholar 

  26. Aizawa, H. et al. Phosphorylation of cofilin by LIM kinase is necessary for semaphorin 3A–induced growth cone collapse. Nat. Neurosci. 4, 367–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Heredia, L. et al. Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta–induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer's disease. J. Neurosci. 26, 6533–6542 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aunis, D. & Bader, M.F. The cytoskeleton as a barrier to exocytosis in secretory cells. J. Exp. Biol. 139, 253–266 (1988).

    CAS  PubMed  Google Scholar 

  29. Eitzen, G. Actin remodeling to facilitate membrane fusion. Biochim. Biophys. Acta 1641, 175–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Lanzetti, L. Actin in membrane trafficking. Curr. Opin. Cell Biol. 19, 453–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Spector, I., Shochet, N.R., Kashman, Y. & Groweiss, A. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219, 493–495 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, C.H. & Lisman, J.E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hotulainen, P. et al. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J. Cell Biol. 185, 323–339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Racz, B. & Weinberg, R.J. Spatial organization of cofilin in dendritic spines. Neuroscience 138, 447–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Makino, H. & Malinow, R. AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64, 381–390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rust, M.B. et al. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin–mediated actin dynamics. EMBO J. 29, 1889–1902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Han, L. et al. Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin. EMBO J. 26, 4189–4202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Yuen, E.Y., Liu, W., Kafri, T., van Praag, H. & Yan, Z. Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase slingshot in cortical neurons. J. Physiol. 588, 2361–2371 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Onuma, H. et al. A calcineurin inhibitor, FK506, blocks voltage-gated calcium channel-dependent LTP in the hippocampus. Neurosci. Res. 30, 313–319 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Z. et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135, 535–548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schulz, T.W. et al. Actin/alpha-actinin–dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL. J. Neurosci. 24, 8584–8594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, C.W. et al. Regulation of acetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking. Nat. Neurosci. 12, 848–856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoogenraad, C.C., Akhmanova, A., Galjart, N. & De Zeeuw, C.I. LIMK1 and CLIP-115: linking cytoskeletal defects to Williams syndrome. Bioessays 26, 141–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Flynn, K.C., Pak, C.W., Shaw, A.E., Bradke, F. & Bamburg, J.R. Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev. Neurobiol. 69, 761–779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deng, L. et al. Sequential postsynaptic maturation governs the temporal order of GABAergic and glutamatergic synaptogenesis in rat embryonic cultures. J. Neurosci. 27, 10860–10869 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schafer, D.A. et al. Visualization and molecular analysis of actin assembly in living cells. J. Cell Biol. 143, 1919–1930 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the US National Institutes of Health to J.Q.Z. (GM083889 GM084363, and HD023315), J.R.B. (NS40371), G.C. (NS054858) and H.C.H. (EY014852 and GM60448).

Author information

Authors and Affiliations

Authors

Contributions

J.G. performed a majority of the experiments on SEP-GluR1 insertion, C.W.L. contributed to the data on actin dynamics and Y.F. investigated cofilin phosphorylation and its contribution to spine size changes. D.K. performed the initial work on SEP-GluR1 imaging and cofilin regulation. X.T., C.S. and G.C. provided a majority of the electrophysiology data. K.Y. and H.C.H. contributed to the electrophysiological recordings on neurons expressing cofilin mutants. J.R.B. provided all of the cofilin reagents and insights into cofilin mechanisms and functions. J.Q.Z. designed, planned and guided the project and contributed to the image analysis.

Corresponding author

Correspondence to James Q Zheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 1662 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, J., Lee, C., Fan, Y. et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 13, 1208–1215 (2010). https://doi.org/10.1038/nn.2634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing