Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pet-1 is required across different stages of life to regulate serotonergic function

Abstract

Transcriptional cascades are required for the specification of serotonin (5-HT) neurons and behaviors modulated by 5-HT. Several cascade factors are expressed throughout the lifespan, which suggests that their control of behavior might not be temporally restricted to programming normal numbers of 5-HT neurons. We used new mouse conditional targeting approaches to investigate the ongoing requirements for Pet-1 (also called Fev), a cascade factor that is required for the initiation of 5-HT synthesis, but whose expression persists into adulthood. We found that Pet-1 was required after the generation of 5-HT neurons for multiple steps in 5-HT neuron maturation, including axonal innervation of the somatosensory cortex, expression of appropriate firing properties, and the expression of the Htr1a and Htr1b autoreceptors. Pet-1 was still required in adult 5-HT neurons to preserve normal anxiety-related behaviors through direct autoregulated control of serotonergic gene expression. These findings indicate that Pet-1 is required across the lifespan of the mouse and that behavioral pathogenesis can result from both developmental and adult-onset alterations in serotonergic transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional deletion of Pet-1 after specification of 5-HT neuronal fate.
Figure 2: Continued Pet-1 function is required for maturation of serotonergic axonal innervation patterns.
Figure 3: Continued Pet-1 function is required for 5-HT neuron firing properties and inhibitory autoreceptor function.
Figure 4: Continued Gata3 expression is needed to maintain 5-HT gene expression but not autoreceptor function.
Figure 5: Stage-specific disruption of Pet-1 in the adult ascending 5-HT system.
Figure 6: Disruption of Pet-1-dependent transcription in the adult ascending 5-HT system causes elevated anxiety-like behavior.
Figure 7: 5-HT synthesis and Slc6a4 expression are maintained in the adult ascending 5-HT system through positively autoregulated direct Pet-1 transactivation.

Similar content being viewed by others

References

  1. Holmes, A. Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci. Biobehav. Rev. 32, 1293–1314 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ansorge, M.S., Hen, R. & Gingrich, J.A. Neurodevelopmental origins of depressive disorders. Curr. Opin. Pharmacol. 7, 8–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Vitalis, T., Cases, O., Passemard, S., Callebert, J. & Parnavelas, J.G. Embryonic depletion of serotonin affects cortical development. Eur. J. Neurosci. 26, 331–344 (2007).

    Article  PubMed  Google Scholar 

  4. Salichon, N. et al. Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J. Neurosci. 21, 884–896 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonnin, A., Torii, M., Wang, L., Rakic, P. & Levitt, P. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat. Neurosci. 10, 588–597 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Ansorge, M.S., Zhou, M., Lira, A., Hen, R. & Gingrich, J.A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Maciag, D. et al. Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry. Neuropsychopharmacology 31, 47–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Gross, C. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Jans, L.A., Riedel, W.J., Markus, C.R. & Blokland, A. Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol. Psychiatry 12, 522–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Scott, M.M. & Deneris, E.S. Making and breaking serotonin neurons and autism. Int. J. Dev. Neurosci. 23, 277–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Cordes, S.P. Molecular genetics of the early development of hindbrain serotonergic neurons. Clin. Genet. 68, 487–494 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hendricks, T.J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Dai, J.X. et al. Enhanced contextual fear memory in central serotonin-deficient mice. Proc. Natl. Acad. Sci. USA 105, 11981–11986 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hendricks, T., Francis, N., Fyodorov, D. & Deneris, E. The ETS domain factor Pet-1 is an early and precise marker of central 5-HT neurons and interacts with a conserved element in serotonergic genes. J. Neurosci. 19, 10348–10356 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scott, M.M. et al. A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc. Natl. Acad. Sci. USA 102, 16472–16477 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacob, J. et al. Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis. Nat. Neurosci. 10, 1433–1439 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Pattyn, A. et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev. 17, 729–737 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, Z.Q. et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J. Neurosci. 26, 12781–12788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krueger, K.C. & Deneris, E.S. Serotonergic transcription of human FEV reveals direct GATA factor interactions and fate of Pet-1-deficient serotonin neuron precursors. J. Neurosci. 28, 12748–12758 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lidov, H.G. & Molliver, M.E. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res. Bull. 8, 389–430 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vertes, R.P., Fortin, W.J. & Crane, A.M. Projections of the median raphe nucleus in the rat. J. Comp. Neurol. 407, 555–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Le Francois, B., Czesak, M., Steubl, D. & Albert, P.R. Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology 55, 977–985 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Fornal, C.A. et al. Single-unit responses of serotonergic dorsal raphe neurons to 5–HT1A agonist and antagonist drug administration in behaving cats. J. Pharmacol. Exp. Ther. 270, 1345–1358 (1994).

    CAS  PubMed  Google Scholar 

  25. Bayliss, D.A., Li, Y.W. & Talley, E.M. Effects of serotonin on caudal raphe neurons: activation of an inwardly rectifying potassium conductance. J. Neurophysiol. 77, 1349–1361 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Sari, Y. Serotonin1B receptors: from protein to physiological function and behavior. Neurosci. Biobehav. Rev. 28, 565–582 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Bonnin, A., Peng, W., Hewlett, W. & Levitt, P. Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience 141, 781–794 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Craven, S.E. et al. Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131, 1165–1173 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat. Immunol. 5, 1157–1165 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Vogt, M.A. et al. Suitability of tamoxifen-induced mutagenesis for behavioral phenotyping. Exp. Neurol. 211, 25–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Scott, M.M., Krueger, K.C. & Deneris, E.S. A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development. J. Neurosci. 25, 2628–2636 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Janusonis, S., Gluncic, V. & Rakic, P. Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J. Neurosci. 24, 1652–1659 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gutknecht, L. et al. Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J. Neural Transm. 115, 1127–1132 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Ludwig, V. & Schwarting, R.K. Neurochemical and behavioral consequences of striatal injection of 5,7-dihydroxytryptamine. J. Neurosci. Methods 162, 108–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Pum, M.E., Huston, J.P. & Muller, C.P. The role of cortical serotonin in anxiety and locomotor activity in Wistar rats. Behav. Neurosci. 123, 449–454 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Sommer, W. et al. Local 5,7-dihydroxytryptamine lesions of rat amygdala: release of punished drinking, unaffected plus-maze behavior and ethanol consumption. Neuropsychopharmacology 24, 430–440 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Varga, V. et al. Fast synaptic subcortical control of hippocampal circuits. Science 326, 449–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Heisler, L.K. et al. Elevated anxiety and antidepressant-like responses in serotonin 5–HT1A receptor mutant mice. Proc. Natl. Acad. Sci. USA 95, 15049–15054 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramboz, S. et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc. Natl. Acad. Sci. USA 95, 14476–14481 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Richardson-Jones, J.W. et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 65, 40–52 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flames, N. & Hobert, O. Gene regulatory logic of dopamine neuron differentiation. Nature 458, 885–889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hobert, O. Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. Proc. Natl. Acad. Sci. USA 105, 20067–20071 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gardner, K.L., Hale, M.W., Lightman, S.L., Plotsky, P.M. & Lowry, C.A. Adverse early life experience and social stress during adulthood interact to increase serotonin transporter mRNA expression. Brain Res. 1305, 47–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shishkina, G.T., Kalinina, T.S. & Dygalo, N.N. Up-regulation of tryptophan hydroxylase-2 mRNA in the rat brain by chronic fluoxetine treatment correlates with its antidepressant effect. Neuroscience 150, 404–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Lerch-Haner, J.K., Frierson, D., Crawford, L.K., Beck, S.G. & Deneris, E.S. Serotonergic transcriptional programming determines maternal behavior and offspring survival. Nat. Neurosci. 11, 1001–1003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rivera, H.M., Oberbeck, D.R., Kwon, B., Houpt, T.A. & Eckel, L.A. Estradiol increases Pet-1 and serotonin transporter mRNA in the midbrain raphe nuclei of ovariectomized rats. Brain Res. 1259, 51–58 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O'Gorman, S., Dagenais, N.A., Qian, M. & Marchuk, Y. Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl. Acad. Sci. USA 94, 14602–14607 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Landmesser for suggestions on retrograde tracing; S. Dymecki and P. Chambon for CreERT2 plasmids; Q. Ma for the mycPet-1 vector; J. Zhu for the Gata3loxP/loxP mice; K. Lobur for assistance with genotyping of mice; J. Reeves for behavioral testing in the Case Rodent Behavior Core; and L. Landmesser, S. Maricich and J. Silver for comments on the manuscript. This work was supported by grants MH062723 and MH078028 to E.S.D. (US National Institutes of Health).

Author information

Authors and Affiliations

Authors

Contributions

E.S.D. conceived the project. C.L. made the transgenic and targeting constructs, characterized all new mouse lines and generated all histological, RT-PCR and retrograde tracing data and images. C.L. and S.C.W. performed western blot analyses. C.L. and G.C. performed behavioral analyses. T.M. and S.H. generated the electrophysiology data. C.L., S.H., T.M., G.C., S.C.W. and E.S.D. analyzed the data. E.S.D. and C.L. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Evan S Deneris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1 and 2 (PDF 1026 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Maejima, T., Wyler, S. et al. Pet-1 is required across different stages of life to regulate serotonergic function. Nat Neurosci 13, 1190–1198 (2010). https://doi.org/10.1038/nn.2623

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2623

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing