Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GABAergic circuits control stimulus-instructed receptive field development in the optic tectum

Abstract

During the development of sensory systems, receptive fields are modified by stimuli in the environment. This is thought to rely on learning algorithms that are sensitive to correlations in spike timing between cells, but the manner in which developing circuits selectively exploit correlations that are related to sensory inputs is unknown. We recorded from neurons in the developing optic tectum of Xenopus laevis and found that repeated presentation of moving visual stimuli induced receptive field changes that reflected the properties of the stimuli and that this form of learning was disrupted when GABAergic transmission was blocked. Consistent with a role for spike timing–dependent mechanisms, GABA blockade altered spike-timing patterns in the tectum and increased correlations between cells that would affect plasticity at intratectal synapses. This is a previously unknown role for GABAergic signals in development and highlights the importance of regulating the statistics of spiking activity for learning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examining stimulus-driven receptive field changes in tectal neurons.
Figure 2: Moving stimuli instruct asymmetric changes in tectal receptive fields.
Figure 3: Blocking GABAergic inputs eliminates instructive training effects on tectal receptive fields.
Figure 4: Effects of GABAA receptor blockade on baseline receptive field properties.
Figure 5: GABA blockade boosts temporal correlations between tectal neurons during training.
Figure 6: Receptive field changes are altered by manipulations of spike timing during training.
Figure 7: GABAergic circuits reduce spatiotemporal correlations in tectal receptive fields.
Figure 8: The timing of synaptic inputs underlies GABAergic control of tectal spiking.

Similar content being viewed by others

References

  1. Goodman, C.S. & Shatz, C.J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72, 77–98 (1993).

    Article  Google Scholar 

  2. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  3. Wiesel, T.N. & Hubel, D.H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  Google Scholar 

  4. Stryker, M.P. Evidence for a possible role for spontaneous electrical activity in the development of the mammalian visual cortex. in Problems and Concepts in Developmental Neurophysiology (eds. Kellaway, P. & Noebels, J.L.) 110–130 (John Hopkins University Press, Baltimore, 1989).

  5. Weliky, M. & Katz, L.C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997).

    Article  CAS  Google Scholar 

  6. Engert, F., Tao, H.W., Zhang, L.I. & Poo, M. Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons. Nature 419, 470–475 (2002).

    Article  CAS  Google Scholar 

  7. Li, Y., Van Hooser, S.D., Mazurek, M., White, L.E. & Fitzpatrick, D. Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature 456, 952–956 (2008).

    Article  CAS  Google Scholar 

  8. Meliza, C.D. & Dan, Y. Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron 49, 183–189 (2006).

    Article  CAS  Google Scholar 

  9. Sengpiel, F., Stawinski, P. & Bonhoeffer, T. Influence of experience on orientation maps in cat visual cortex. Nat. Neurosci. 2, 727–732 (1999).

    Article  CAS  Google Scholar 

  10. Vislay-Meltzer, R.L., Kampff, A.R. & Engert, F. Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system. Neuron 50, 101–114 (2006).

    Article  CAS  Google Scholar 

  11. Mu, Y. & Poo, M. Spike timing–dependent LTP/LTD mediates visual experience–dependent plasticity in a developing retinotectal system. Neuron 50, 115–125 (2006).

    Article  CAS  Google Scholar 

  12. Schuett, S., Bonhoeffer, T. & Hübener, M. Pairing-induced changes of orientation maps in cat visual cortex. Neuron 32, 325–337 (2001).

    Article  CAS  Google Scholar 

  13. Shon, A.P., Rao, R.P.N. & Sejnowski, T.J. Motion detection and prediction through spike-timing dependent plasticity. Network 15, 179–198 (2004).

    Article  CAS  Google Scholar 

  14. Wenisch, O.G., Noll, J. & Hemmen, J. Spontaneously emerging direction selectivity maps in visual cortex through STDP. Biol. Cybern. 93, 239–247 (2005).

    Article  Google Scholar 

  15. Weliky, M. Correlated neuronal activity and visual cortical development. Neuron 27, 427–430 (2000).

    Article  CAS  Google Scholar 

  16. Ramoa, A.S., Paradiso, M.A. & Freeman, R.D. Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity. Exp. Brain Res. 73, 285–296 (1988).

    Article  CAS  Google Scholar 

  17. Gabernet, L., Jadhav, S.P., Feldman, D.E., Carandini, M. & Scanziani, M. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315–327 (2005).

    Article  CAS  Google Scholar 

  18. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feedforward inhibition. Science 293, 1159–1163 (2001).

    Article  CAS  Google Scholar 

  19. Wehr, M. & Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).

    Article  CAS  Google Scholar 

  20. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  CAS  Google Scholar 

  21. Akerman, C.J. & Cline, H.T. Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo. J. Neurosci. 26, 5117–5130 (2006).

    Article  CAS  Google Scholar 

  22. Dunning, D.D., Hoover, C.L., Soltesz, I., Smith, M.A. & O′Dowd, D.K. GABAA receptor–mediated miniature postsynaptic currents and alpha-subunit expression in developing cortical neurons. J. Neurophysiol. 82, 3286–3297 (1999).

    Article  CAS  Google Scholar 

  23. Hollrigel, G.S. & Soltesz, I. Slow kinetics of miniature IPSCs during early postnatal development in granule cells of the dentate gyrus. J. Neurosci. 17, 5119–5128 (1997).

    Article  CAS  Google Scholar 

  24. Liu, Y., Zhang, L.I. & Tao, H.W. Heterosynaptic scaling of developing GABAergic synapses: dependence on glutamatergic input and developmental stage. J. Neurosci. 27, 5301–5312 (2007).

    Article  CAS  Google Scholar 

  25. Tao, H.W. & Poo, M. Activity-dependent matching of excitatory and inhibitory inputs during refinement of visual receptive fields. Neuron 45, 829–836 (2005).

    Article  CAS  Google Scholar 

  26. Tyzio, R. et al. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J. Neurosci. 19, 10372–10382 (1999).

    Article  CAS  Google Scholar 

  27. Luhmann, H.J. & Prince, D.A. Postnatal maturation of the GABAergic system in rat neocortex. J. Neurophysiol. 65, 247–263 (1991).

    Article  CAS  Google Scholar 

  28. Mueller, A.L., Taube, J.S. & Schwartzkroin, P.A. Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to gamma-aminobutyric acid in rabbit hippocampus studied in vitro. J. Neurosci. 4, 860–867 (1984).

    Article  CAS  Google Scholar 

  29. Zhang, L.I., Tao, H.W. & Poo, M. Visual input induces long-term potentiation of developing retinotectal synapses. Nat. Neurosci. 3, 708–715 (2000).

    Article  CAS  Google Scholar 

  30. Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A. & Poo, M. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998).

    Article  CAS  Google Scholar 

  31. Gao, X.B. & Van Den Pol, A.N. GABA, not glutamate, a primary transmitter driving action potentials in developing hypothalamic neurons. J. Neurophysiol. 85, 425–434 (2001).

    Article  CAS  Google Scholar 

  32. Staley, K.J. & Mody, I. Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor–mediated postsynaptic conductance. J. Neurophysiol. 68, 197–212 (1992).

    Article  CAS  Google Scholar 

  33. Ulrich, D. Differential arithmetic of shunting inhibition for voltage and spike rate in neocortical pyramidal cells. Eur. J. Neurosci. 18, 2159–2165 (2003).

    Article  Google Scholar 

  34. Gulledge, A.T. & Stuart, G.J. Excitatory actions of GABA in the cortex. Neuron 37, 299–309 (2003).

    Article  CAS  Google Scholar 

  35. Chen, G., Trombley, P.Q. & van den Pol, A.N. Excitatory actions of GABA in developing rat hypothalamic neurones. J. Physiol. (Lond.) 494, 451–464 (1996).

    Article  CAS  Google Scholar 

  36. Pratt, K.G., Dong, W. & Aizenman, C.D. Development and spike timing–dependent plasticity of recurrent excitation in the Xenopus optic tectum. Nat. Neurosci. 11, 467–475 (2008).

    Article  CAS  Google Scholar 

  37. Holt, C.E. & Harris, W.A. Order in the initial retinotectal map in Xenopus: a new technique for labeling growing nerve fibres. Nature 301, 150–152 (1983).

    Article  CAS  Google Scholar 

  38. Froemke, R.C. & Dan, Y. Spike timing–dependent synaptic modification induced by natural spike trains. Nature 416, 433–438 (2002).

    Article  CAS  Google Scholar 

  39. Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B. Rate, timing and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).

    Article  Google Scholar 

  40. Wulff, P. et al. Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat. Neurosci. 12, 1042–1049 (2009).

    Article  CAS  Google Scholar 

  41. Akerman, C.J. & Cline, H.T. Refining the roles of GABAergic signaling during neural circuit formation. Trends Neurosci. 30, 382–389 (2007).

    Article  CAS  Google Scholar 

  42. Pavlov, I., Riekki, R. & Taira, T. Synergistic action of GABAA and NMDA receptors in the induction of long-term depression in glutamatergic synapses in the newborn rat hippocampus. Eur. J. Neurosci. 20, 3019–3026 (2004).

    Article  Google Scholar 

  43. Wang, D.D. & Kriegstein, A.R. GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J. Neurosci. 28, 5547–5558 (2008).

    Article  CAS  Google Scholar 

  44. Hensch, T.K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998).

    Article  CAS  Google Scholar 

  45. Nieuwkoop, P.D. & Faber, J. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis (North-Holland Pub., Amsterdam, 1967).

  46. Khawaled, R., Bruening-Wright, A., Adelman, J.P. & Maylie, J. Bicuculline block of small-conductance calcium-activated potassium channels. Pflugers Arch. 438, 314–321 (1999).

    Article  CAS  Google Scholar 

  47. Niell, C.M. & Smith, S.J. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron 45, 941–951 (2005).

    Article  CAS  Google Scholar 

  48. Dayan, P. & Abbott, L.F. Neural encoding I: firing rates and spike statistics. in Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (eds. Sejnowski, T.J. & Poggio, T.) 3–44 (MIT Press, Cambridge, Massachusetts, 2003).

  49. Song, S., Miller, K.D. & Abbott, L.F. Competitive Hebbian learning through spike timing–dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000).

    Article  CAS  Google Scholar 

  50. Tao, H.W., Zhang, L.I., Engert, F. & Poo, M. Emergence of input specificity of LTP during development of retinotectal connections in vivo. Neuron 31, 569–580 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Cline, K. Lamsa and O. Paulsen for helpful discussions and for comments on the manuscript. This work was supported by grants from the Biotechnology and Biological Sciences Research Council (BB/E0154761) and the Medical Research Council (G0601503). The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013), ERC grant agreement number 243273. In addition, C.J.A. was supported by a Fellowship from the Research Councils UK and British Pharmacological Society, and B.A.R. was supported by a Wellcome Trust Doctoral Fellowship and a Post Graduate Scholarship from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

B.A.R. conducted the experiments. B.A.R., O.P.V. and C.J.A. designed the experiments, contributed to the data analysis, prepared the figures and wrote the manuscript.

Corresponding author

Correspondence to Colin J Akerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, B., Voss, O. & Akerman, C. GABAergic circuits control stimulus-instructed receptive field development in the optic tectum. Nat Neurosci 13, 1098–1106 (2010). https://doi.org/10.1038/nn.2612

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2612

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing