Abstract
Ca2+ is thought to be essential for the exocytosis and endocytosis of synaptic vesicles. However, the manner in which Ca2+ coordinates these processes remains unclear, particularly at mature synapses. Using membrane capacitance measurements from calyx of Held nerve terminals in rats, we found that vesicle endocytosis is initiated primarily in Ca2+ nanodomains around Ca2+ channels, where exocytosis is triggered. Bulk Ca2+ outside of the domain could also be involved in endocytosis at immature synapses, although only after extensive exocytosis at more mature synapses. This bulk Ca2+-dependent endocytosis required calmodulin and calcineurin activation at immature synapses, but not at more mature synapses. Similarly, GTP-independent endocytosis, which occurred after extensive exocytosis at immature synapses, became negligible after maturation. We propose that nanodomain Ca2+ simultaneously triggers exocytosis and endocytosis of synaptic vesicles and that the molecular mechanisms underlying Ca2+-dependent endocytosis undergo major developmental changes at this fast central synapse.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Remote control of neural function by X-ray-induced scintillation
Nature Communications Open Access 22 July 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Heuser, J.E. & Reese, T.S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).
Koenig, J.H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844–3860 (1989).
Artalejo, C.R., Henley, J.R., McNiven, M.A. & Palfrey, H.C. Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP and dynamin, but not clathrin. Proc. Natl. Acad. Sci. USA 92, 8328–8332 (1995).
Neves, G., Gomis, A. & Lagnado, L. Calcium influx selects the fast mode of endocytosis in the synaptic terminal of retinal bipolar cells. Proc. Natl. Acad. Sci. USA 98, 15282–15287 (2001).
Beutner, D., Voets, T., Neher, E. & Moser, T. Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29, 681–690 (2001).
Wu, W., Xu, J., Wu, X.-S. & Wu, L.-G. Activity-dependent acceleration of endocytosis at a central synapse. J. Neurosci. 25, 11676–11683 (2005).
Hosoi, N., Holt, M. & Sakaba, T. Calcium-dependence of exo- and endocytotic coupling at a glutamatergic synapse. Neuron 63, 216–229 (2009).
Wu, X.-S. et al. Ca2+ and calmodulin initiates all forms of endocytosis during depolarization at a nerve terminal. Nat. Neurosci. 12, 1003–1010 (2009).
Renden, R. & von Gersdorff, H. Synaptic vesicle endocytosis at a CNS nerve terminal: faster kinetics at physiological temperatures and increased endocytotic capacity during maturation. J. Neurophysiol. 98, 3349–3359 (2007).
Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).
Balaji, J., Armbruster, M. & Ryan, T.A. Calcium control of endocytic capacity at a CNS synapse. J. Neurosci. 28, 6742–6749 (2008).
Naraghi, M. & Neher, E. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17, 6961–6973 (1997).
Augustine, G.J., Santamaria, F. & Tanaka, K. Local calcium signaling in neurons. Neuron 40, 331–346 (2003).
Jewett, D.L. & Romano, M.N. Neonatal development of auditory system potentials averaged from the scalp of rat and cat. Brain Res. 36, 101–115 (1972).
Borst, J.G.G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).
Fedchyshyn, M.J. & Wang, L.-Y. Developmental transformation of the release modality at the calyx of Held synapse. J. Neurosci. 25, 4131–4140 (2005).
Artalejo, C.R., Elhamdani, A. & Palfrey, H.C. Calmodulin is the divalent cation receptor for rapid endocytosis, but not exocytosis, in adrenal chromaffin cells. Neuron 16, 195–205 (1996).
Engisch, K.L. & Nowycky, M.C. Compensatory and excess retrieval: two types of endocytosis following single step depolarizations in bovine adrenal chromaffin cells. J. Physiol. (Lond.) 506, 591–608 (1998).
Chan, S.-A. & Smith, C. Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells. J. Physiol. (Lond.) 537, 871–885 (2001).
Marks, B. & McMahon, H.T. Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Curr. Biol. 8, 740–749 (1998).
Cousin, M.A. & Robinson, P.J. The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci. 24, 659–665 (2001).
Slepnev, V.I., Ochoa, G.-C., Butler, M.H., Grabs, D. & De Camilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281, 821–824 (1998).
Yamashita, T., Hige, T. & Takahashi, T. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science 307, 124–127 (2005).
Jockusch, W.J., Praefcke, G.J.K., McMahon, H.T. & Lagnado, L. Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 46, 869–878 (2005).
Heidelberger, R. ATP is required at an early step in compensatory endocytosis in synaptic terminals. J. Neurosci. 21, 6467–6474 (2001).
Xu, J. et al. GTP-independent rapid and slow endocytosis at a central synapse. Nat. Neurosci. 11, 45–53 (2008).
Török, K. et al. Inhibition of calmodulin-activated smooth-muscle myosin light-chain kinase by calmodulin-binding peptides and fluorescent (phosphodiesterase-activating) calmodulin derivatives. Biochemistry 37, 6188–6198 (1998).
Nakamura, T., Yamashita, T., Saitoh, N. & Takahashi, T. Developmental changes in calcium/calmodulin-dependent inactivation of calcium currents at the rat calyx of Held. J. Physiol. (Lond.) 586, 2253–2261 (2008).
Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).
Gad, H., Löw, P., Zotova, E., Brodin, L. & Shupliakov, O. Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron 21, 607–616 (1998).
Roos, J. & Kelly, R.B. The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr. Biol. 9, 1411–1414 (1999).
Teng, H. & Wilkinson, R.S. Clathrin-mediated endocytosis near active zones in snake motor boutons. J. Neurosci. 20, 7986–7993 (2000).
Poskanzer, K.E., Marek, K.W., Sweeney, S.T. & Davis, G.W. Synaptotagmin 1 is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563 (2003).
Llinás, R.R., Sugimori, M., Moran, K.A., Moreira, J.E. & Fukuda, M. Vesicular reuptake inhibition by a synaptotagmin I C2B domain antibody at the squid giant synapse. Proc. Natl. Acad. Sci. USA 101, 17855–17860 (2004).
Daly, C. & Ziff, E.B. Ca2+-dependent formation of a dynamin-synaptophysin complex: potential role in synaptic vesicle endocytosis. J. Biol. Chem. 277, 9010–9015 (2002).
Chen, Y. et al. Formation of an endophillin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Cell 115, 37–48 (2003).
Watanabe, H. et al. Involvement of Ca2+ channel synprint site in synaptic vesicle endocytosis. J. Neurosci. 30, 655–660 (2010).
Xu, J. & Wu, L.-G. The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46, 633–645 (2005).
Nakamura, Y., DiGregorio, D. & Takahashi, T. Single action potential–evoked Ca2+ transients at the calyx of Held presynaptic terminal. Neurosci. Res. 58, S71 (2007).
Shifman, J.M., Choi, M.H., Mihalas, S., Mayo, S.L. & Kennedy, M.B. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc. Natl. Acad. Sci. USA 103, 13968–13973 (2006).
Burgoyne, R.D. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signaling. Nat. Rev. Neurosci. 8, 182–193 (2007).
Kawasaki, F., Hazen, M. & Ordway, R.W. Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic membrane trafficking. Nat. Neurosci. 3, 859–860 (2000).
Wu, Y., Kawasaki, F. & Ordway, R.W. Properties of short-term synaptic depression at larval neuromuscular synapses in wild-type and temperature-sensitive paralytic mutants of Drosophila. J. Neurophysiol. 93, 2396–2405 (2005).
Lou, X., Paradise, S., Ferguson, S.M. & De Camilli, P. Selective saturation of slow endocytosis at a giant glutamatergic central synapse lacking dynamin 1. Proc. Natl. Acad. Sci. USA 105, 17555–17560 (2008).
Newton, A.J., Kirchhausen, T. & Murthy, V.N. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 103, 17955–17960 (2006).
von Gersdorff, H. & Matthews, G. Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370, 652–655 (1994).
Wu, L.-G., Ryan, T.A. & Lagnado, L. Modes of vesicle retrieval at ribbon synapses, calyx-type synapses and small central synapses. J. Neurosci. 27, 11793–11802 (2007).
Kimura, M., Saitoh, N. & Takahashi, T. Adenosine A1 receptor–mediated presynaptic inhibition at the calyx of Held of immature rats. J. Physiol. (Lond.) 553, 415–426 (2003).
Acknowledgements
We thank E. Johnson and S. Takamori for helpful comments. This work was supported by the Core Research for Evolutional Science and Technology of Japan Science and Technology Agency (T.T.), US National Institutes of Health grant EY014043 (H.v.G.) and Grant-in-Aid for Young Scientists from the Japanese Ministry of Education, Culture, Sports, Science and Technology #20700357 (T.Y.).
Author information
Authors and Affiliations
Contributions
T.Y. and T.T. designed the experiments. H.v.G. designed the experiments on nonhydrolysable GTP analogues. T.Y., K.E. and N.S. performed the experiments and analyzed the data. T.Y., H.v.G. and T.T. wrote the manuscript. All of authors revised and approved the final manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–4 (PDF 650 kb)
Rights and permissions
About this article
Cite this article
Yamashita, T., Eguchi, K., Saitoh, N. et al. Developmental shift to a mechanism of synaptic vesicle endocytosis requiring nanodomain Ca2+. Nat Neurosci 13, 838–844 (2010). https://doi.org/10.1038/nn.2576
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn.2576
This article is cited by
-
Remote control of neural function by X-ray-induced scintillation
Nature Communications (2021)
-
Bidirectional regulation of Ca2+ in exo–endocytosis coupling
Science China Life Sciences (2018)
-
Putting a brake on synaptic vesicle endocytosis
Cellular and Molecular Life Sciences (2017)
-
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles
Nature Communications (2014)
-
Structural and Functional Maturation of Active Zones in Large Synapses
Molecular Neurobiology (2013)