Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling

Abstract

A major cause of the cerebral cortex expansion that occurred during evolution is the increase in subventricular zone (SVZ) progenitors. We found that progenitors in the outer SVZ (OSVZ) of developing human neocortex retain features of radial glia, in contrast to rodent SVZ progenitors, which have limited proliferation potential. Although delaminating from apical adherens junctions, OSVZ progenitors maintained a basal process contacting the basal lamina, a canonical epithelial property. OSVZ progenitor divisions resulted in asymmetric inheritance of their basal process. Notably, OSVZ progenitors are also found in the ferret, a gyrencephalic nonprimate. Functional disruption of integrins, expressed on the basal process of ferret OSVZ progenitors, markedly decreased the OSVZ progenitor population size, but not that of other, process-lacking SVZ progenitors, in slice cultures of ferret neocortex. Our findings suggest that maintenance of this epithelial property allows integrin-mediated, repeated asymmetric divisions of OSVZ progenitors, providing a basis for neocortical expansion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pax6 and Tbr2 expression in developing human (ak) and ferret (ls) neocortex.
Figure 2: Human OSVZ progenitors express markers of radial glia.
Figure 3: Human and ferret OSVZ progenitors retain basal processes through M phase.
Figure 4: Human OSVZ progenitors have perinuclear centrosomes.
Figure 5: Human and ferret SVZ progenitors have near-random cleavage plane orientation, resulting in asymmetric inheritance of the basal process.
Figure 6: Inhibition of integrin function decreases the population of cycling Pax6-positive, Tbr2-negative SVZ progenitors, but not of cycling Pax6-negative or Tbr2-positive SVZ progenitors, in the E40 ferret neocortex.
Figure 7: Localization of β3-integrin on basal processes of ferret SVZ and ventricular zone progenitors.

Similar content being viewed by others

References

  1. Kriegstein, A., Noctor, S. & Martínez-Cerdeño, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7, 883–890 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Molnár, Z. et al. Comparative aspects of cerebral cortical development. Eur. J. Neurosci. 23, 921–934 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abdel-Mannan, O., Cheung, A.F. & Molnár, Z. Evolution of cortical neurogenesis. Brain Res. Bull. 75, 398–404 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Fish, J.L., Kennedy, H., Dehay, C. & Huttner, W.B. Making bigger brains—the evolution of neural progenitor cell division. J. Cell Sci. 121, 2783–2793 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  PubMed  Google Scholar 

  7. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Attardo, A., Calegari, F., Haubensak, W., Wilsch-Bräuninger, M. & Huttner, W.B. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS One 3, e2388 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Smart, I.H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    Article  PubMed  Google Scholar 

  10. Murphy, W.J., Pringle, T.H., Crider, T.A., Springer, M.S. & Miller, W. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res. 17, 413–421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kowalczyk, T. et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex 19, 2439–2450 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bayatti, N. et al. A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb. Cortex 18, 1536–1548 (2008).

    Article  PubMed  Google Scholar 

  14. Götz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–1044 (1998).

    Article  PubMed  Google Scholar 

  15. Mo, Z. & Zecevic, N. Is Pax6 critical for neurogenesis in the human fetal brain? Cereb. Cortex 18, 1455–1465 (2008).

    Article  PubMed  Google Scholar 

  16. Carney, R.S., Bystron, I., Lopez-Bendito, G. & Molnár, Z. Comparative analysis of extra-ventricular mitoses at early stages of cortical development in rat and human. Brain Struct. Funct. 212, 37–54 (2007).

    Article  PubMed  Google Scholar 

  17. Kriegstein, A.R. & Götz, M. Radial glia diversity: a matter of cell fate. Glia 43, 37–43 (2003).

    Article  PubMed  Google Scholar 

  18. Levitt, P. & Rakic, P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol. 193, 815–840 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Woodhams, P.L., Bascó, E., Hajós, F., Csillág, A. & Balázs, R. Radial glia in the developing mouse cerebral cortex and hippocampus. Anat. Embryol. (Berl.) 163, 331–343 (1981).

    Article  CAS  Google Scholar 

  20. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Kosodo, Y. et al. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J. 27, 3151–3163 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noctor, S.C., Martínez-Cerdeño, V. & Kriegstein, A.R. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J. Comp. Neurol. 508, 28–44 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lukaszewicz, A. et al. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47, 353–364 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kamei, Y. et al. Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase–phosphorylated vimentin. Glia 23, 191–199 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Weigmann, A., Corbeil, D., Hellwig, A. & Huttner, W.B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl. Acad. Sci. USA 94, 12425–12430 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manabe, N. et al. Association of ASIP/mPAR-3 with adherens junctions of mouse neuroepithelial cells. Dev. Dyn. 225, 61–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Costa, M.R., Wen, G., Lepier, A., Schroeder, T. & Götz, M. Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 135, 11–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Aaku-Saraste, E., Hellwig, A. & Huttner, W.B. Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure—remodeling of the neuroepithelium prior to neurogenesis. Dev. Biol. 180, 664–679 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Chenn, A., Zhang, Y.A., Chang, B.T. & McConnell, S.K. Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell. Neurosci. 11, 183–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Smart, I.H. & McSherry, G.M. Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. J. Anat. 146, 141–152 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Neal, J. et al. Insights into the gyrification of developing ferret brain by magnetic resonance imaging. J. Anat. 210, 66–77 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schmid, R.S. & Anton, E.S. Role of integrins in the development of the cerebral cortex. Cereb. Cortex 13, 219–224 (2003).

    Article  PubMed  Google Scholar 

  35. Haubst, N., Georges-Labouesse, E., De Arcangelis, A., Mayer, U. & Gotz, M. Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 133, 3245–3254 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Lathia, J.D., Rao, M.S., Mattson, M.P. & Ffrench-Constant, C. The microenvironment of the embryonic neural stem cell: lessons from adult niches? Dev. Dyn. 236, 3267–3282 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Radakovits, R., Barros, C.S., Belvindrah, R., Patton, B. & Müller, U. Regulation of radial glial survival by signals from the meninges. J. Neurosci. 29, 7694–7705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calvete, J.J. et al. Snake venom disintegrins: evolution of structure and function. Toxicon 45, 1063–1074 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Hirsch, E. et al. Alpha v integrin subunit is predominantly located in nervous tissue and skeletal muscle during mouse development. Dev. Dyn. 201, 108–120 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida, N. et al. Decrease in expression of alpha 5 beta 1 integrin during neuronal differentiation of cortical progenitor cells. Exp. Cell Res. 287, 262–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Wierzbicka-Patynowski, I. et al. Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J. Biol. Chem. 274, 37809–37814 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Flanagan, L.A., Rebaza, L.M., Derzic, S., Schwartz, P.H. & Monuki, E.S. Regulation of human neural precursor cells by laminin and integrins. J. Neurosci. Res. 83, 845–856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Middeldorp, J. et al. GFAPdelta in radial glia and subventricular zone progenitors in the developing human cortex. Development 137, 313–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Hansen, D.V., Lui, J.H., Parker, P.R. & Kriegstein, A.R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Fish, J.L., Kosodo, Y., Enard, W., Pääbo, S. & Huttner, W.B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl. Acad. Sci. USA 103, 10438–10443 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fuchs, E. Finding one's niche in the skin. Cell Stem Cell 4, 499–502 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karbanová, J. et al. The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J. Histochem. Cytochem. 56, 977–993 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Giebel, B. et al. Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood 104, 2332–2338 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Helppi and other members of the animal facility, and the light microscopy facility, of the Max Planck Institute of Molecular Cell Biology and Genetics for excellent support, A.-M. Marzesco and E. Taverna for experimental advice, C. Haffner for excellent technical assistance, S. Preibisch for developing the Fiji plug-in, and J. Pulvers for his helpful comments on the manuscript. We are grateful to the Bundesinstitut für Risikobewertung and Biotie Therapies for ferret housing. S.A.F., I.K. and J.L.F. were members of the International Max Planck Research School for Molecular Cell Biology and Bioengineering. W.B.H. was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG) (SFB 655, A2) and by the DFG-funded Center for Regenerative Therapies Dresden and by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

S.A.F. performed the experiments on human tissue. S.A.F. and I.K. contributed equally to the experiments on ferret tissue and co-wrote the paper. J.V. provided human tissue and gave advice on the experiments. M.W.-B. performed the electron microscopy analyses. D.S. proposed the use of echistatin and contributed to some experiments. D.C. provided reagents for prominin-1 analyses. J.L.F., A.R., W.D. and R.N. provided human tissue. W.B.H. supervised the project and wrote the paper.

Corresponding author

Correspondence to Wieland B Huttner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Text (PDF 9276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fietz, S., Kelava, I., Vogt, J. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13, 690–699 (2010). https://doi.org/10.1038/nn.2553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing