Selective induction of astrocytic gliosis generates deficits in neuronal inhibition


Reactive astrocytosis develops in many neurologic diseases, including epilepsy. Astrocytotic contributions to pathophysiology are poorly understood. Studies examining this are confounded by comorbidities accompanying reactive astrocytosis. We found that high-titer transduction of astrocytes with enhanced green fluorescent protein (eGFP) via adeno-associated virus induced reactive astrocytosis without altering the intrinsic properties or anatomy of neighboring neurons. We examined the consequences of selective astrocytosis induction on synaptic transmission in mouse CA1 pyramidal neurons. Neurons near eGFP-labeled reactive astrocytes had reduced inhibitory, but not excitatory, synaptic currents. This inhibitory postsynaptic current (IPSC) erosion resulted from a failure of the astrocytic glutamate-glutamine cycle. Reactive astrocytes downregulated expression of glutamine synthetase. Blockade of this enzyme normally induces rapid synaptic GABA depletion. In astrocytotic regions, residual inhibition lost sensitivity to glutamine synthetase blockade, whereas exogenous glutamine administration enhanced IPSCs. Astrocytosis-mediated deficits in inhibition triggered glutamine-reversible hyperexcitability in hippocampal circuits. Thus, reactive astrocytosis could generate local synaptic perturbations, leading to broader functional deficits associated with neurologic disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Astrocyte-specific eGFP expression.
Figure 2: AAV2/5–Gfa104-eGFP induces a titer-dependent reactivity of astrocytes.
Figure 3: Inhibitory neurotransmission is impaired in CA1 pyramidal cells proximal to reactive astrocytes.
Figure 4: Preserved excitatory neurotransmission in CA1 pyramidal neurons proximal to reactive astrocytes.
Figure 5: Glutamate-glutamine cycle deficits reduce the concentration of vesicular GABA.
Figure 6: Reactive gliosis is associated with network hyperexcitability.


  1. 1

    Haydon, P.G. & Carmignoto, G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 86, 1009–1031 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Pascual, O. et al. Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Volterra, A. & Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Bak, L.K., Schousboe, A. & Waagepetersen, H.S. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem. 98, 641–653 (2006).

    CAS  Article  Google Scholar 

  5. 5

    de Melo Reis, R.A., Ventura, A.L., Schitine, C.S., de Mello, M.C. & de Mello, F.G. Müller glia as an active compartment modulating nervous activity in the vertebrate retina: neurotransmitters and trophic factors. Neurochem. Res. 33, 1466–1474 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Syková, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).

    Article  Google Scholar 

  7. 7

    Chaudhry, F.A., Reimer, R.J. & Edwards, R.H. The glutamine commute: take the N line and transfer to the A. J. Cell Biol. 157, 349–355 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Liang, S.L., Carlson, G.C. & Coulter, D.A. Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J. Neurosci. 26, 8537–8548 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Fricke, M.N., Jones-Davis, D.M. & Mathews, G.C. Glutamine uptake by System A transporters maintains neurotransmitter GABA synthesis and inhibitory synaptic transmission. J. Neurochem. 102, 1895–1904 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Kam, K. & Nicoll, R. Excitatory synaptic transmission persists independently of the glutamate-glutamine cycle. J. Neurosci. 27, 9192–9200 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Eid, T. et al. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363, 28–37 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Eid, T., Williamson, A., Lee, T.S., Petroff, O.A. & de Lanerolle, N.C. Glutamate and astrocytes—key players in human mesial temporal lobe epilepsy? Epilepsia 49, 42–52 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Sepkuty, J.P. et al. A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy. J. Neurosci. 22, 6372–6379 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Robinson, S.R. Changes in the cellular distribution of glutamine synthetase in Alzheimer's disease. J. Neurosci. Res. 66, 972–980 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Tilleux, S. & Hermans, E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J. Neurosci. Res. 85, 2059–2070 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Seifert, G., Schilling, K. & Steinhauser, C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat. Rev. Neurosci. 7, 194–206 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Pekny, M. & Nilsson, M. Astrocyte activation and reactive gliosis. Glia 50, 427–434 (2005).

    Article  Google Scholar 

  18. 18

    Wilhelmsson, U. et al. Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J. Neurosci. 24, 5016–5021 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Wetherington, J., Serrano, G. & Dingledine, R. Astrocytes in the epileptic brain. Neuron 58, 168–178 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Steffens, M., Huppertz, H.J., Zentner, J., Chauzit, E. & Feuerstein, T.J. Unchanged glutamine synthetase activity and increased NMDA receptor density in epileptic human neocortex: implications for the pathophysiology of epilepsy. Neurochem. Int. 47, 379–384 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Rosati, A. et al. Epilepsy in glioblastoma multiforme: correlation with glutamine synthetase levels. J. Neurooncol. 93, 319–324 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Barberis, A., Petrini, E.M. & Cherubini, E. Presynaptic source of quantal size variability at GABAergic synapses in rat hippocampal neurons in culture. Eur. J. Neurosci. 20, 1803–1810 (2004).

    Article  Google Scholar 

  23. 23

    Parpura, V. et al. Glutamate-mediated astrocyte-neuron signaling. Nature 369, 744–747 (1994).

    CAS  Article  Google Scholar 

  24. 24

    Rizzoli, S.O. & Betz, W.J. Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57–69 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Burrone, J., Li, Z. & Murthy, V.N. Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin. Nat. Protoc. 1, 2970–2978 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Oliva, A.A. Jr., Jiang, M., Lam, T., Smith, K.L. & Swann, J.W. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J. Neurosci. 20, 3354–3368 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Ang, C.W., Carlson, G.C. & Coulter, D.A. Hippocampal CA1 circuitry dynamically gates direct cortical inputs preferentially at theta frequencies. J. Neurosci. 25, 9567–9580 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Ang, C.W., Carlson, G.C. & Coulter, D.A. Massive and specific dysregulation of direct cortical input to the hippocampus in temporal lobe epilepsy. J. Neurosci. 26, 11850–11856 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Bushong, E.A., Martone, M.E., Jones, Y.Z. & Ellisman, M. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Mozrzymas, J.W. et al. GABA transient sets the susceptibility of mIPSCs to modulation by benzodiazepine receptor agonists in rat hippocampal neurons. J. Physiol. (Lond.) 585, 29–46 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Cohen, A.S., Lin, D.D. & Coulter, D.A. Protracted postnatal development of inhibitory synaptic transmission in rat hippocampal area CA1 neurons. J. Neurophysiol. 84, 2465–2476 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Sun, H.Y., Lyons, S.A. & Dobrunz, L.E. Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats. J. Physiol. (Lond.) 568, 815–840 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Jakubs, K. et al. Inflammation regulates functional integration of neurons born in adult brain. J. Neurosci. 28, 12477–12488 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Galic, M.A. et al. Postnatal inflammation increases seizure susceptibility in adult rats. J. Neurosci. 28, 6904–6913 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Binder, D.K. & Steinhauser, C. Functional changes in astroglial cells in epilepsy. Glia 54, 358–368 (2006).

    Article  Google Scholar 

  36. 36

    Cameron, H.A. Quantitative analysis of in vivo cell proliferation. in Current Protocols in Neuroscience Ch 3, Unit 3.9 (2006).

  37. 37

    Ortinski, P.I., Lu, C., Takagaki, K., Fu, Z. & Vicini, S. Expression of distinct alpha subunits of GABAA receptor regulates inhibitory synaptic strength. J. Neurophysiol. 92, 1718–1727 (2004).

    CAS  Article  Google Scholar 

Download references


This work was supported by US National Institutes of Health grants P01 NS054900 and P20 MH071705 to D.A.C., P01NS054900, R01NS054770 and R01NS037585 to P.G.H., R01NS040978 to D.J.W. and by an Epilepsy Foundation Research Fellowship to P.I.O.

Author information




P.I.O. and J.D. conducted and analyzed all of the experiments. A.M. assisted with viral vector production. C.Y. contributed to VSD data collection and analysis. H.T. assisted with confocal and multiphoton microscope data acquisition and processing. D.J.W. contributed to initial generation of the AAV-injected mice. P.I.O. and D.A.C. wrote the manuscript with help from P.G.H. and J.D. D.A.C. and P.G.H. designed the experiments with P.I.O. and J.D. and supervised the project.

Corresponding author

Correspondence to Douglas A Coulter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1 and 2 (PDF 16834 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ortinski, P., Dong, J., Mungenast, A. et al. Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13, 584–591 (2010).

Download citation

Further reading