Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation

Abstract

A myriad of mechanisms have been suggested to account for the full richness of visual cortical plasticity. We found that visual cortex lacking Arc is impervious to the effects of deprivation or experience. Using intrinsic signal imaging and chronic visually evoked potential recordings, we found that Arc−/− mice did not exhibit depression of deprived-eye responses or a shift in ocular dominance after brief monocular deprivation. Extended deprivation also failed to elicit a shift in ocular dominance or open-eye potentiation. Moreover, Arc−/− mice lacked stimulus-selective response potentiation. Although Arc−/− mice exhibited normal visual acuity, baseline ocular dominance was abnormal and resembled that observed after dark-rearing. These data suggest that Arc is required for the experience-dependent processes that normally establish and modify synaptic connections in visual cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of Arc does not affect V1 responsiveness and organization.
Figure 2: Intrinsic signal imaging after monocular deprivation illustrates a requirement for Arc in deprived-eye depression after short-term monocular deprivation.
Figure 3: Chronic VEP recordings show that Arc−/− mice do not exhibit ocular dominance plasticity after short-term monocular deprivation.
Figure 4: Arc is required for the decrease in surface AMPARs after short-term monocular deprivation.
Figure 5: Arc−/− mice do not show a shift in ocular dominance after extended deprivation, as assessed by intrinsic signal imaging.
Figure 6: Arc−/− mice exhibit no ocular dominance plasticity as assessed by chronic VEP recordings after long-term monocular deprivation.
Figure 7: Dark-rearing wild-type mice from birth mimics the contralateral to ipsilateral ratio observed Arc−/− mice.
Figure 8: Arc−/− mice lack stimulus-selective response potentiation (SRP), whereas dark-reared mice exhibit enhanced SRP in V1.

Similar content being viewed by others

References

  1. Tropea, D., Van Wart, A. & Sur, M. Molecular mechanisms of experience-dependent plasticity in visual cortex. Phil. Trans. R. Soc. Lond. B Biol. Sci. 364, 341–355 (2009).

    Article  Google Scholar 

  2. Gordon, J.A. & Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  Google Scholar 

  3. Mrsic-Flogel, T.D. et al. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961–972 (2007).

    Article  CAS  Google Scholar 

  4. Kaneko, M., Stellwagen, D., Malenka, M. & Stryker, M.P. Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58, 673–680 (2006).

    Article  Google Scholar 

  5. Frenkel, M.Y. & Bear, M.F. How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44, 917–923 (2004).

    Article  CAS  Google Scholar 

  6. Bear, M.F., Kleinschmidt, A., Gu, Q.A. & Singer, W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci. 10, 909–925 (1990).

    Article  CAS  Google Scholar 

  7. Hensch, T.K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998).

    Article  CAS  Google Scholar 

  8. Taha, S., Hanover, J.L., Silva, A.J. & Stryker, M.P. Autophosphorylation of alphaCaMKII is required for ocular dominance plasticity. Neuron 36, 483–491 (2002).

    Article  CAS  Google Scholar 

  9. Heynen, A.J. et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat. Neurosci. 6, 854–862 (2003).

    Article  CAS  Google Scholar 

  10. Allen, C.B., Celikel, T. & Feldman, D.E. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat. Neurosci. 6, 291–299 (2003).

    Article  CAS  Google Scholar 

  11. Crozier, R.A., Wang, Y., Liu, C.H. & Bear, M.F. Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex. Proc. Natl. Acad. Sci. USA 104, 1383–1388 (2007).

    Article  CAS  Google Scholar 

  12. Shepherd, J.D. & Huganir, R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    Article  CAS  Google Scholar 

  13. Yoon, B.J., Smith, G.B., Heynen, A.J., Neve, R.L. & Bear, M.F. Essential role for a long-term depression mechanism in ocular dominance plasticity. Proc. Natl. Acad. Sci. USA 106, 9860–9865 (2009).

    Article  CAS  Google Scholar 

  14. Goel, A. & Lee, H.K. Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex. J. Neurosci. 27, 6692–6700 (2007).

    Article  CAS  Google Scholar 

  15. Desai, N.S., Cudmore, R.H., Nelson, S.B. & Turrigiano, G.G. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci. 5, 783–789 (2002).

    Article  CAS  Google Scholar 

  16. Frenkel, M.Y. et al. Instructive effect of visual experience in mouse visual cortex. Neuron 51, 339–349 (2006).

    Article  CAS  Google Scholar 

  17. Plath, N. et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444 (2006).

    Article  CAS  Google Scholar 

  18. Messaoudi, E. et al. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci. 27, 10445–10455 (2007).

    Article  CAS  Google Scholar 

  19. Guzowski, J.F. et al. Inhibition of activity-dependent Arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001 (2000).

    Article  CAS  Google Scholar 

  20. Park, S. et al. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59, 70–83 (2008).

    Article  CAS  Google Scholar 

  21. Waung, M.W., Pfeiffer, B.E., Nosyreva, E.D., Ronesi, J.A. & Huber, K.M. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 59, 84–97 (2008).

    Article  CAS  Google Scholar 

  22. Shepherd, J.D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).

    Article  CAS  Google Scholar 

  23. Rial Verde, E.M., Lee-Osbourne, J., Worley, P.F., Malinow, R. & Cline, H.T. Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor–mediated synaptic transmission. Neuron 52, 461–474 (2006).

    Article  Google Scholar 

  24. Lyford, G.L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    Article  CAS  Google Scholar 

  25. Steward, O. & Worley, P.F. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30, 227–240 (2001).

    Article  CAS  Google Scholar 

  26. Dölen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).

    Article  Google Scholar 

  27. Sawtell, N.B. et al. NMDA receptor–dependent ocular dominance plasticity in adult visual cortex. Neuron 38, 977–985 (2003).

    Article  CAS  Google Scholar 

  28. Daw, N.W., Reid, S.N. & Beaver, C.J. Development and function of metabotropic glutamate receptors in cat visual cortex. J. Neurobiol. 41, 102–107 (1999).

    Article  CAS  Google Scholar 

  29. Tagawa, Y., Kanold, P.O., Majdan, M. & Shatz, C.J. Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nat. Neurosci. 8, 380–388 (2005).

    Article  CAS  Google Scholar 

  30. Wang, K.H. et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 126, 389–402 (2006).

    Article  CAS  Google Scholar 

  31. Vazdarjanova, A. et al. Spatial exploration induces Arc, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J. Comp. Neurol. 498, 317–329 (2006).

    Article  CAS  Google Scholar 

  32. Kalatsky, V.A. & Stryker, M.P. New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38, 529–545 (2003).

    Article  CAS  Google Scholar 

  33. Tropea, D. et al. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nat. Neurosci. 9, 660–668 (2006).

    Article  CAS  Google Scholar 

  34. Porciatti, V., Pizzorusso, T. & Maffei, L. The visual physiology of the wild-type mouse determined with pattern VEPs. Vision Res. 39, 3071–3081 (1999).

    Article  CAS  Google Scholar 

  35. Cang, J., Kalatsky, V.A., Ouml Wel, S. & Stryker, M.P. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Vis. Neurosci. 22, 685–691 (2005).

    Article  Google Scholar 

  36. Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 (2006).

    Article  CAS  Google Scholar 

  37. Kim, T.J., Ye, E.A. & Jeon, C.J. Distribution of AMPA glutamate receptor GluR1 subunit–immunoreactive neurons and their co-localization with calcium-binding proteins and GABA in the mouse visual cortex. Mol. Cells 21, 34–41 (2006).

    CAS  PubMed  Google Scholar 

  38. Lu, W. & Constantine-Paton, M. Eye opening rapidly induces synaptic potentiation and refinement. Neuron 43, 237–249 (2004).

    Article  CAS  Google Scholar 

  39. Pfeiffenberger, C. et al. Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping. Nat. Neurosci. 8, 1022–1027 (2005).

    Article  CAS  Google Scholar 

  40. Smith, S.L. & Trachtenberg, J.T. Experience-dependent binocular competition in the visual cortex begins at eye opening. Nat. Neurosci. 10, 370–375 (2007).

    Article  CAS  Google Scholar 

  41. Gianfranceschi, L. et al. Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc. Natl. Acad. Sci. USA 100, 12486–12491 (2003).

    Article  CAS  Google Scholar 

  42. Rittenhouse, C.D. et al. Stimulus for rapid ocular dominance plasticity in visual cortex. J. Neurophysiol. 95, 2947–2950 (2006).

    Article  Google Scholar 

  43. Roberts, E.B., Meredith, M.A. & Ramoa, A.S. Suppression of NMDA receptor function using antisense DNA blocks ocular dominance plasticity while preserving visual responses. J. Neurophysiol. 80, 1021–1032 (1998).

    Article  CAS  Google Scholar 

  44. Di Cristo, G. et al. Requirement of ERK activation for visual cortical plasticity. Science 292, 2337–2340 (2001).

    Article  CAS  Google Scholar 

  45. Cho, K.K., Khibnik, L. & Philpot, B.D. The ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex. Proc. Natl. Acad. Sci. USA 106, 5377–5382 (2009).

    Article  CAS  Google Scholar 

  46. Waltereit, R. et al. Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci. 21, 5484–5493 (2001).

    Article  CAS  Google Scholar 

  47. Sato, M. & Stryker, M.P. Distinctive features of adult ocular dominance plasticity. J. Neurosci. 28, 10278–10286 (2008).

    Article  CAS  Google Scholar 

  48. Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L. & Maffei, L. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res. 34, 709–720 (1994).

    Article  CAS  Google Scholar 

  49. Coleman, J.E., Law, K. & Bear, M.F. Anatomical origins of ocular dominance in mouse primary visual cortex. Neuroscience 161, 561–571 (2009).

    Article  CAS  Google Scholar 

  50. Cynader, M. Prolonged sensitivity to monocular deprivation in dark-reared cats. J. Neurophysiol. 43, 1026–1040 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Emery for assistance with the preparation of the manuscript. We thank members of the Sur and Bear laboratories for their comments and helpful discussions. This work was supported by grants from the US National Institutes of Health (C.L.M., D.T. and M.S.) and the Howard Hughes Medical Institute (J.D.S. and M.F.B.).

Author information

Authors and Affiliations

Authors

Contributions

C.L.M. and J.D.S. conducted experiments and data analysis and wrote the manuscript. D.T. assisted with optical imaging experiments. K.H.W. provided the Arc−/− mouse line. M.S. and M.F.B. helped design experiments and supervised the project.

Corresponding authors

Correspondence to Mark F Bear or Mriganka Sur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 3502 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCurry, C., Shepherd, J., Tropea, D. et al. Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation. Nat Neurosci 13, 450–457 (2010). https://doi.org/10.1038/nn.2508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing