Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptic correlates of fear extinction in the amygdala

Abstract

Anxiety disorders such as post-traumatic stress are characterized by an impaired ability to learn that cues previously associated with danger no longer represent a threat. However, the mechanisms underlying fear extinction remain unclear. We found that fear extinction in rats was associated with increased levels of synaptic inhibition in fear output neurons of the central amygdala (CEA). This increased inhibition resulted from a potentiation of fear input synapses to GABAergic intercalated amygdala neurons that project to the CEA. Enhancement of inputs to intercalated cells required prefrontal activity during extinction training and involved an increased transmitter release probability coupled to an altered expression profile of ionotropic glutamate receptors. Overall, our results suggest that intercalated cells constitute a promising target for pharmacological treatment of anxiety disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased inhibition of CEm neurons in extinction and conditioned inhibition.
Figure 2: Group-related differences in CEm EPSP slopes and orthodromic spiking in response to BLA stimulation.
Figure 3: Increased recruitment of CEl neurons by BLA inputs in conditioned inhibition.
Figure 4: Enhanced efficacy of BLA synapses onto ITC cells in extinction.
Figure 5: Mechanisms underlying increased BLA responsiveness of ITC cells in extinction.
Figure 6: Infralimbic (IL) inactivation blocks extinction-related changes in the efficacy of BLA synapses onto ITC cells.

Similar content being viewed by others

References

  1. Myers, K.M. & Davis, M. Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150 (2007).

    Article  CAS  Google Scholar 

  2. Quirk, G.J. & Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56–72 (2008).

    Article  Google Scholar 

  3. Davis, M. The role of the amygdala in conditioned and unconditioned fear and anxiety. in The Amygdala: A Functional Analysis (ed. Aggleton, J.P.) 213–287 (Oxford University Press, Oxford, 2000).

  4. Hopkins, D.A. & Holstege, G. Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp. Brain Res. 32, 529–547 (1978).

    Article  CAS  Google Scholar 

  5. LeDoux, J.E., Cicchetti, P., Xagoraris, A. & Romanski, L.M. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J. Neurosci. 10, 1062–1069 (1990).

    Article  CAS  Google Scholar 

  6. Romanski, L.M. & LeDoux, J.E. Information cascade from primary auditory cortex to the amygdala: cortex in the rat. Cereb. Cortex 3, 515–532 (1993).

    Article  CAS  Google Scholar 

  7. Amorapanth, P., LeDoux, J.E. & Nader, K. Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nat. Neurosci. 3, 74–79 (2000).

    Article  CAS  Google Scholar 

  8. Maren, S., Yap, S.A. & Goosens, K.A. The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J. Neurosci. 21, RC135 (2001).

    Article  CAS  Google Scholar 

  9. Krettek, J.E. & Price, J.L. A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J. Comp. Neurol. 178, 255–280 (1978).

    Article  CAS  Google Scholar 

  10. Paré, D., Quirk, G.J. & LeDoux, J.E. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92, 1–9 (2004).

    Article  Google Scholar 

  11. Pitkänen, A., Savander, V. & LeDoux, J.E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20, 517–523 (1997).

    Article  Google Scholar 

  12. Anglada-Figueroa, D. & Quirk, G.J. Lesions of the basal amygdala block expression of conditioned fear but not extinction. J. Neurosci. 25, 9680–9685 (2005).

    Article  CAS  Google Scholar 

  13. Herry, C. et al. Switching on and off fear by distinct neuronal circuits. Nature 454, 600–606 (2008).

    Article  CAS  Google Scholar 

  14. Hobin, J.A., Goosens, K.A. & Maren, S. Context-dependent neuronal activity in the lateral amygdala represents fear memories after extinction. J. Neurosci. 23, 8410–8416 (2003).

    Article  CAS  Google Scholar 

  15. Repa, J.C. et al. Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat. Neurosci. 4, 724–731 (2001).

    Article  CAS  Google Scholar 

  16. Royer, S., Martina, M. & Paré, D. An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J. Neurosci. 19, 10575–10583 (1999).

    Article  CAS  Google Scholar 

  17. Petrovich, G.D. & Swanson, L.W. Projections from the lateral part of the central amygdalar nucleus to the postulated fear conditioning circuit. Brain Res. 763, 247–254 (1997).

    Article  CAS  Google Scholar 

  18. McDonald, A.J., Mascagni, F. & Guo, L. Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71, 55–75 (1996).

    Article  CAS  Google Scholar 

  19. Rescorla, R.A. Conditioned inhibition of fear resulting from negative CS-US contingencies. J. Comp. Physiol. Psychol. 67, 504–509 (1969).

    Article  CAS  Google Scholar 

  20. Milad, M.R. et al. Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J. Psychiatr. Res. 42, 515–520 (2008).

    Article  Google Scholar 

  21. Pascoe, J.P. & Kapp, B.S. Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit. Behav. Brain Res. 16, 117–133 (1985).

    Article  CAS  Google Scholar 

  22. Ciocchi, S., Herry, C., Muller, C. & Luthi, A. Fear conditioning– and extinction-induced neuronal plasticity in the central amygdala. FENS Abstr. 4:057.10 (2008).

  23. Lin, H.C., Mao, S.C. & Gean, P.W. Block of gamma-aminobutyric acid-A receptor insertion in the amygdala impairs extinction of conditioned fear. Biol. Psychiatry 66, 665–673 (2009).

    Article  CAS  Google Scholar 

  24. Harris, J.A. & Westbrook, R.F. Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology (Berl.) 140, 105–115 (1998).

    Article  CAS  Google Scholar 

  25. Paré, D. & Smith, Y. Distribution of GABA immunoreactivity in the amygdaloid complex of the cat. Neuroscience 57, 1061–1076 (1993).

    Article  Google Scholar 

  26. Paré, D. & Smith, Y. The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience 57, 1077–1090 (1993).

    Article  Google Scholar 

  27. Likhtik, E., Popa, D., Apergis-Schoute, J., Fidacaro, G.A. & Pare, D. Amygdala intercalated neurons are required for expression of fear extinction. Nature 454, 642–645 (2008).

    Article  CAS  Google Scholar 

  28. Jüngling, K. et al. Neuropeptide S–mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 59, 298–310 (2008).

    Article  Google Scholar 

  29. Heldt, S.A. & Ressler, K.J. Training-induced changes in the expression of GABAA-associated genes in the amygdala after the acquisition and extinction of Pavlovian fear. Eur. J. Neurosci. 26, 3631–3644 (2007).

    Article  Google Scholar 

  30. Falls, W.A., Miserendino, M.J.D. & Davis, M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J. Neurosci. 12, 854–863 (1992).

    Article  CAS  Google Scholar 

  31. Lee, H. & Kim, J.J. Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J. Neurosci. 18, 8444–8454 (1998).

    Article  CAS  Google Scholar 

  32. Walker, D.L., Ressler, K.J., Lu, K.T. & Davis, M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of d-cycloserine as assessed with fear-potentiated startle in rats. J. Neurosci. 22, 2343–2351 (2002).

    Article  CAS  Google Scholar 

  33. Milad, M.R. & Quirk, G.J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70–74 (2002).

    Article  CAS  Google Scholar 

  34. Quirk, G.J., Likhtik, E., Pelletier, J.G. & Pare, D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J. Neurosci. 23, 8800–8807 (2003).

    Article  CAS  Google Scholar 

  35. Royer, S. & Pare, D. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 115, 455–462 (2002).

    Article  CAS  Google Scholar 

  36. Burgos-Robles, A., Vidal-Gonzalez, I., Santini, E. & Quirk, G.J. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53, 871–880 (2007).

    Article  CAS  Google Scholar 

  37. Bremner, J.D., Elzinga, B., Schmahl, C. & Vermetten, E. Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog. Brain Res. 167, 171–186 (2008).

    Article  Google Scholar 

  38. Shin, L.M., Rauch, S.L. & Pitman, R.K. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann. NY Acad. Sci. 1071, 67–79 (2006).

    Article  Google Scholar 

  39. Herkenham, M. & Pert, C.B. Light microscopic localization of brain opiate receptors: a general autoradiographic method which preserves tissue quality. J. Neurosci. 2, 1129–1149 (1982).

    Article  CAS  Google Scholar 

  40. Jacobsen, K.X., Hoistad, M., Staines, W.A. & Fuxe, K. The distribution of dopamine D1 receptor and mu-opioid receptor 1 receptor immunoreactivities in the amygdala and interstitial nucleus of the posterior limb of the anterior commissure: relationships to tyrosine hydroxylase and opioid peptide terminal systems. Neuroscience 141, 2007–2018 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Mental Health grant RO1 MH083710 to D.P.

Author information

Authors and Affiliations

Authors

Contributions

T.A. and C.T.U. performed all of the electrophysiological experiments and most of the analyses on ITC and CEA cells, respectively. T.A. performed the behavioral training and C.T.U. scored the behavior. D.P. designed the experiments, wrote the paper and contributed to data analysis.

Corresponding author

Correspondence to Denis Paré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–14 and Supplementary Results (PDF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amano, T., Unal, C. & Paré, D. Synaptic correlates of fear extinction in the amygdala. Nat Neurosci 13, 489–494 (2010). https://doi.org/10.1038/nn.2499

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing