Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Axonal prion protein is required for peripheral myelin maintenance

Abstract

The integrity of peripheral nerves relies on communication between axons and Schwann cells. The axonal signals that ensure myelin maintenance are distinct from those that direct myelination and are largely unknown. Here we show that ablation of the prion protein PrPC triggers a chronic demyelinating polyneuropathy (CDP) in four independently targeted mouse strains. Ablation of the neighboring Prnd locus, or inbreeding to four distinct mouse strains, did not modulate the CDP. CDP was triggered by depletion of PrPC specifically in neurons, but not in Schwann cells, and was suppressed by PrPC expression restricted to neurons but not to Schwann cells. CDP was prevented by PrPC variants that undergo proteolytic amino-proximal cleavage, but not by variants that are nonpermissive for cleavage, including secreted PrPC lacking its glycolipid membrane anchor. These results indicate that neuronal expression and regulated proteolysis of PrPC are essential for myelin maintenance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peripheral polyneuropathy in Prnpo/o mice.
Figure 2: Ultrastructural alterations in Prnpo/o sciatic nerves.
Figure 3: Electrophysiology and behavior of Prnpo/o mice.
Figure 4: Expression of PrPC by neurons is essential for myelin sheath maintenance.
Figure 5: Neuron-specific but not Schwann cell–specific depletion of PrPC induces polyneuropathy.
Figure 6: PrPC expression and proteolytic processing in sciatic nerves of wild-type and tgGPIPrP mice.
Figure 7: Role of N-terminal domains and lymphocytes in the pathogenesis of Prnpo/o polyneuropathy.

Similar content being viewed by others

References

  1. Aguzzi, A., Baumann, F. & Bremer, J. The prion's elusive reason for being. Annu. Rev. Neurosci. 31, 439–477 (2008).

    Article  CAS  Google Scholar 

  2. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  CAS  Google Scholar 

  3. Laurén, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W. & Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128–1132 (2009).

    Article  Google Scholar 

  4. Büeler, H. et al. Normal development and behavior of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  Google Scholar 

  5. Lledo, P.M., Tremblay, P., Dearmond, S.J., Prusiner, S.B. & Nicoll, R.A. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc. Natl. Acad. Sci. USA 93, 2403–2407 (1996).

    Article  CAS  Google Scholar 

  6. Collinge, J. et al. Prion protein is necessary for normal synaptic function. Nature 370, 295–297 (1994).

    Article  CAS  Google Scholar 

  7. Mallucci, G.R. et al. Postnatal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–210 (2002).

    Article  CAS  Google Scholar 

  8. Nazor, K.E., Seward, T. & Telling, G.C. Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression. Biochim. Biophys. Acta 1772, 645–653 (2007).

    Article  CAS  Google Scholar 

  9. Steele, A.D., Lindquist, S. & Aguzzi, A. The prion protein knockout mouse: a phenotype under challenge. Prion 1, 83–93 (2007).

    Article  Google Scholar 

  10. Nishida, N. et al. A mouse prion protein transgene rescues mice deficient for the prion protein gene from Purkinje cell degeneration and demyelination. Lab. Invest. 79, 689–697 (1999).

    CAS  PubMed  Google Scholar 

  11. Heikenwalder, M. et al. Lymphotoxin-dependent prion replication in inflammatory stromal cells of granulomas. Immunity 29, 998–1008 (2008).

    Article  CAS  Google Scholar 

  12. Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264 (1996).

    Article  CAS  Google Scholar 

  13. Moore, R.C. et al. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J. Mol. Biol. 292, 797–817 (1999).

    Article  CAS  Google Scholar 

  14. Genoud, N. et al. Disruption of Doppel prevents neurodegeneration in mice with extensive Prnp deletions. Proc. Natl. Acad. Sci. USA 101, 4198–4203 (2004).

    Article  CAS  Google Scholar 

  15. Behrens, A. et al. Absence of the prion protein homologue Doppel causes male sterility. EMBO J. 21, 3652–3658 (2002).

    Article  CAS  Google Scholar 

  16. Ogata, T. et al. Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J. Neurosci. 24, 6724–6732 (2004).

    Article  CAS  Google Scholar 

  17. Radovanovic, I. et al. Truncated prion protein and Doppel are myelinotoxic in the absence of oligodendrocytic PrPC. J. Neurosci. 25, 4879–4888 (2005).

    Article  CAS  Google Scholar 

  18. Prinz, M. et al. Intrinsic resistance of oligodendrocytes to prion infection. J. Neurosci. 24, 5974–5981 (2004).

    Article  CAS  Google Scholar 

  19. Polymenidou, M. et al. The POM monoclonals: a comprehensive set of antibodies to non-overlapping prion protein epitopes. PLoS One 3, e3872 (2008).

    Article  Google Scholar 

  20. Watt, N.T. & Hooper, N.M. Reactive oxygen species (ROS)-mediated beta-cleavage of the prion protein in the mechanism of the cellular response to oxidative stress. Biochem. Soc. Trans. 33, 1123–1125 (2005).

    Article  CAS  Google Scholar 

  21. Mangé, A. et al. Alpha- and beta- cleavages of the amino-terminus of the cellular prion protein. Biol. Cell 96, 125–132 (2004).

    Article  Google Scholar 

  22. Chesebro, B. et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439 (2005).

    Article  CAS  Google Scholar 

  23. Shmerling, D. et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203–214 (1998).

    Article  CAS  Google Scholar 

  24. Mouillet-Richard, S. et al. Signal transduction through prion protein. Science 289, 1925–1928 (2000).

    Article  CAS  Google Scholar 

  25. Schneider, B. et al. NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc. Natl. Acad. Sci. USA 100, 13326–13331 (2003).

    Article  CAS  Google Scholar 

  26. Toni, M. et al. Cellular prion protein and caveolin-1 interaction in a neuronal cell line precedes fyn/erk 1/2 signal transduction. J. Biomed. Biotechnol. 2006, 69469 (2006).

    Article  Google Scholar 

  27. Chen, S., Mange, A., Dong, L., Lehmann, S. & Schachner, M. Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol. Cell. Neurosci. 22, 227–233 (2003).

    Article  CAS  Google Scholar 

  28. Santuccione, A., Sytnyk, V., Leshchyns′ka, I. & Schachner, M. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J. Cell Biol. 169, 341–354 (2005).

    Article  CAS  Google Scholar 

  29. Meotti, F.C. et al. Involvement of cellular prion protein in the nociceptive response in mice. Brain Res. 1151, 84–90 (2007).

    Article  CAS  Google Scholar 

  30. Nico, P.B. et al. Altered behavioral response to acute stress in mice lacking cellular prion protein. Behav. Brain Res. 162, 173–181 (2005).

    Article  CAS  Google Scholar 

  31. Liu, T. et al. Intercellular transfer of the cellular prion protein. J. Biol. Chem. 277, 47671–47678 (2002).

    Article  CAS  Google Scholar 

  32. Nave, K.A. & Trapp, B.D. Axon-glial signaling and the glial support of axon function. Annu. Rev. Neurosci. 31, 535–561 (2008).

    Article  CAS  Google Scholar 

  33. Britsch, S. The neuregulin-I/ErbB signaling system in development and disease. Adv. Anat. Embryol. Cell Biol. 190, 1–65 (2007).

    Article  Google Scholar 

  34. Parkin, E.T. et al. Cellular prion protein regulates beta-secretase cleavage of the Alzheimer′s amyloid precursor protein. Proc. Natl. Acad. Sci. USA 104, 11062–11067 (2007).

    Article  CAS  Google Scholar 

  35. Hu, X. et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. 9, 1520–1525 (2006).

    Article  CAS  Google Scholar 

  36. Willem, M. et al. Control of peripheral nerve myelination by the beta-secretase BACE1. Science 314, 664–666 (2006).

    Article  CAS  Google Scholar 

  37. Rutishauser, D. et al. The comprehensive native interactome of a fully functional tagged prion protein. PLoS One 4, e4446 (2009).

    Article  Google Scholar 

  38. Baumann, F. et al. Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J. 26, 538–547 (2007).

    Article  CAS  Google Scholar 

  39. McMahon, H.E. et al. Cleavage of the amino terminus of the prion protein by reactive oxygen species. J. Biol. Chem. 276, 2286–2291 (2001).

    Article  CAS  Google Scholar 

  40. Sunyach, C., Cisse, M.A., da Costa, C.A., Vincent, B. & Checler, F. The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation. J. Biol. Chem. 282, 1956–1963 (2007).

    Article  CAS  Google Scholar 

  41. Walmsley, A.R., Watt, N.T., Taylor, D.R., Perera, W.S. & Hooper, N.M. Alpha-cleavage of the prion protein occurs in a late compartment of the secretory pathway and is independent of lipid rafts. Mol. Cell. Neurosci. 40, 242–248 (2009).

    Article  CAS  Google Scholar 

  42. Isaacs, J.D., Jackson, G.S. & Altmann, D.M. The role of the cellular prion protein in the immune system. Clin. Exp. Immunol. 146, 1–8 (2006).

    Article  CAS  Google Scholar 

  43. Manson, J.C. et al. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol. 8, 121–127 (1994).

    Article  CAS  Google Scholar 

  44. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  45. Lindeboom, F. et al. A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in the mouse. Nucleic Acids Res. 31, 5405–5412 (2003).

    Article  CAS  Google Scholar 

  46. Zielasek, J., Martini, R. & Toyka, K.V. Functional abnormalities in P0-deficient mice resemble human hereditary neuropathies linked to P0 gene mutations. Muscle Nerve 19, 946–952 (1996).

    Article  CAS  Google Scholar 

  47. Bermingham, J.R. Jr. et al. The claw paw mutation reveals a role for Lgi4 in peripheral nerve development. Nat. Neurosci. 9, 76–84 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Delic, R. Moos, D. Goriounov, C. Tostado, H. Mader, K. Nairz, M. Bieri, N. Wey and D. Meijer for methodological advice and technical help. G. Mallucci provided tgNFH-Cre and tgPrnploxP mice, D. Meijer provided tgDhh-Cre mice, J.C. Manson provided PrnpEdbg/Edbg mice, J. Collinge provided Prnpo/o FVB mice, S. Lindquist and W. Jackson provided PrnpGFP/GFP mice and P. Saftig and A. Rittger provided nerves from BACE1−/− mice. We thank W.B. Macklin for the PLP plasmid; T. Rülicke for pronuclear injections and H. Welzl, I. Drescher and S. Wirth for help with behavioral tests. J.A. Girault and M.T. Dours-Zimmermann donated anti-paranodine/Caspr and anti-versican antibodies, respectively. We thank B. Seifert for statistical consulting. A.A. received an ERC Advanced Investigator Grant and grants from the European Union (PRIORITY and LUPAS), the Novartis Foundation and the Swiss National Foundation. J.B. received a Career Development award from the University of Zürich. C.W. and K.V.T. were supported by the Departmental Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

J.B. and A.A. designed the study and wrote the manuscript. J.B., F.B., C.T., C.W., H.F., P.S., A.D.S., K.V.T. and J.W. did the experiments. J.B., F.B., C.T., C.W., H.F., A.D.S., K.V.T., K.-A.N., J.W. and A.A. analyzed the data.

Corresponding author

Correspondence to Adriano Aguzzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Table 1 (PDF 3544 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bremer, J., Baumann, F., Tiberi, C. et al. Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13, 310–318 (2010). https://doi.org/10.1038/nn.2483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing