Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion

Abstract

Central pattern generators (CPGs) are spinal neuronal networks required for locomotion. Glutamatergic neurons have been implicated as being important for intrinsic rhythm generation in the CPG and for the command signal for initiating locomotion, although this has not been demonstrated directly. We used a newly generated vesicular glutamate transporter 2–channelrhodopsin2–yellow fluorescent protein (Vglut2-ChR2-YFP) mouse to directly examine the functional role of glutamatergic neurons in rhythm generation and initiation of locomotion. This mouse line expressed ChR2-YFP in the spinal cord and hindbrain. ChR2-YFP was reliably expressed in Vglut2-positive cells and YFP-expressing cells could be activated by light. Photo-stimulation of either the lumbar spinal cord or the caudal hindbrain was sufficient to both initiate and maintain locomotor-like activity. Our results indicate that glutamatergic neurons in the spinal cord are critical for initiating or maintaining the rhythm and that activation of hindbrain areas containing the locomotor command regions is sufficient to directly activate the spinal locomotor network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the BAC Vglut2-ChR2-YFP construct and resulting expression of ChR2-YFP in hindbrain and spinal cord.
Figure 2: ChR2-YFP is reliably expressed in excitatory neurons and neuronal classes that express Vglut2 in the spinal cord.
Figure 3: Spinal cord ChR2-YFP neurons depolarize in response to blue light.
Figure 4: Optical activation of Vglut2-expressing cells in the spinal cord generates coordinated locomotor-like activity.
Figure 5: Optical activation of the lower hindbrain is sufficient to generate locomotor-like activity in the lumbar spinal cord.
Figure 6: Blocking glutamatergic synapses in the hindbrain does not prevent light-induced hindbrain-evoked locomotor-activity.

Similar content being viewed by others

References

  1. Grillner, S. The motor infrastructure: from ion channels to neuronal networks. Nat. Rev. Neurosci. 4, 573–586 (2003).

    Article  CAS  Google Scholar 

  2. Feldman, J.L. & Del Negro, C.A. Looking for inspiration: new perspectives on respiratory rhythm. Nat. Rev. Neurosci. 7, 232–242 (2006).

    Article  CAS  Google Scholar 

  3. Kiehn, O. Locomotor circuits in the mammalian spinal cord. Annu. Rev. Neurosci. 29, 279–306 (2006).

    Article  CAS  Google Scholar 

  4. Dubuc, R. et al. Initiation of locomotion in lampreys. Brain Res. Rev. 57, 172–182 (2008).

    Article  Google Scholar 

  5. Jordan, L.M., Liu, J., Hedlund, P.B., Akay, T. & Pearson, K.G. Descending command systems for the initiation of locomotion in mammals. Brain Res. Rev. 57, 183–191 (2008).

    Article  CAS  Google Scholar 

  6. Schmidt, B.J. & Jordan, L.M. The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res. Bull. 53, 689–710 (2000).

    Article  CAS  Google Scholar 

  7. Kiehn, O., Kjaerulff, O., Tresch, M.C. & Harris-Warrick, R.M. Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Res. Bull. 53, 649–659 (2000).

    Article  CAS  Google Scholar 

  8. Nishimaru, H. & Kudo, N. Formation of the central pattern generator for locomotion in the rat and mouse. Brain Res. Bull. 53, 661–669 (2000).

    Article  CAS  Google Scholar 

  9. Clarac, F., Pearlstein, E., Pflieger, J.F. & Vinay, L. The in vitro neonatal rat spinal cord preparation: a new insight into mammalian locomotor mechanisms. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 190, 343–357 (2004).

    Article  CAS  Google Scholar 

  10. Kullander, K. et al. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299, 1889–1892 (2003).

    Article  CAS  Google Scholar 

  11. Lanuza, G.M., Gosgnach, S., Pierani, A., Jessell, T.M. & Goulding, M. Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42, 375–386 (2004).

    Article  CAS  Google Scholar 

  12. Gosgnach, S. et al. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature [see comment] 440, 215–219 (2006).

    Article  CAS  Google Scholar 

  13. Crone, S.A. et al. Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60, 70–83 (2008).

    Article  CAS  Google Scholar 

  14. Zhang, Y. et al. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60, 84–96 (2008).

    Article  CAS  Google Scholar 

  15. Zhang, F., Aravanis, A.M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577–581 (2007).

    Article  CAS  Google Scholar 

  16. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  CAS  Google Scholar 

  17. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behavior in freely moving mice. Nature 451, 61–64 (2008).

    Article  CAS  Google Scholar 

  18. Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  Google Scholar 

  19. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  Google Scholar 

  20. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  Google Scholar 

  21. Pulver, S.R., Pashkovski, S.L., Hornstein, N.J., Garrity, P.A. & Griffith, L.C. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J. Neurophysiol. 101, 3075–3088 (2009).

    Article  Google Scholar 

  22. Liewald, J.F. et al. Optogenetic analysis of synaptic function. Nat. Methods 5, 895–902 (2008).

    Article  CAS  Google Scholar 

  23. Douglass, A.D., Kraves, S., Deisseroth, K., Schier, A.F. & Engert, F. Escape behavior elicited by single, channelrhodopsin-2–evoked spikes in zebrafish somatosensory neurons. Curr. Biol. 18, 1133–1137 (2008).

    Article  CAS  Google Scholar 

  24. Arenkiel, B.R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  Google Scholar 

  25. Wang, H. et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. USA 104, 8143–8148 (2007).

    Article  CAS  Google Scholar 

  26. Fremeau, R.T. Jr. et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260 (2001).

    Article  CAS  Google Scholar 

  27. Fremeau, R.T. Jr., Voglmaier, S., Seal, R.P. & Edwards, R.H. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci. 27, 98–103 (2004).

    Article  CAS  Google Scholar 

  28. Wilson, J.M. et al. Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J. Neurosci. 25, 5710–5719 (2005).

    Article  CAS  Google Scholar 

  29. Lundfald, L. et al. Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur. J. Neurosci. 26, 2989–3002 (2007).

    Article  Google Scholar 

  30. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  Google Scholar 

  31. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  Google Scholar 

  32. Crone, S.A., Zhong, G., Harris-Warrick, R. & Sharma, K. In mice lacking V2a interneurons, gait depends on speed of locomotion. J. Neurosci. 29, 7098–7109 (2009).

    Article  CAS  Google Scholar 

  33. Restrepo, C.E. et al. Transmitter-phenotypes of commissural interneurons in the lumbar spinal cord of newborn mice. J. Comp. Neurol. 517, 177–192 (2009).

    Article  CAS  Google Scholar 

  34. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  35. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  36. Kiehn, O. & Kjaerulff, O. Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates. Ann. NY Acad. Sci. 860, 110–129 (1998).

    Article  CAS  Google Scholar 

  37. Zhong, G., Diaz-Rios, M. & Harris-Warrick, R.M. Serotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord. J. Neurophysiol. 95, 1545–1555 (2006).

    Article  CAS  Google Scholar 

  38. Bracci, E., Ballerini, L. & Nistri, A. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord. J. Neurophysiol. 75, 640–647 (1996).

    Article  CAS  Google Scholar 

  39. Zaporozhets, E., Cowley, K.C. & Schmidt, B.J. Propriospinal neurons contribute to bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J. Physiol. (Lond.) 572, 443–458 (2006).

    Article  CAS  Google Scholar 

  40. Reed, W.R., Shum-Siu, A. & Magnuson, D.S. Reticulospinal pathways in the ventrolateral funiculus with terminations in the cervical and lumbar enlargements of the adult rat spinal cord. Neuroscience 151, 505–517 (2008).

    Article  CAS  Google Scholar 

  41. Liu, J. & Jordan, L.M. Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors. J. Neurophysiol. 94, 1392–1404 (2005).

    Article  CAS  Google Scholar 

  42. Kiehn, O. & Kjaerulff, O. Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J. Neurophysiol. 75, 1472–1482 (1996).

    Article  CAS  Google Scholar 

  43. Aravanis, A.M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  Google Scholar 

  44. McLean, D.L., Masino, M.A., Koh, I.Y., Lindquist, W.B. & Fetcho, J.R. Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat. Neurosci. 11, 1419–1429 (2008).

    Article  CAS  Google Scholar 

  45. Roberts, A., Soffe, S.R., Wolf, E.S., Yoshida, M. & Zhao, F.Y. Central circuits controlling locomotion in young frog tadpoles. Ann. NY Acad. Sci. 860, 19–34 (1998).

    Article  CAS  Google Scholar 

  46. Magnuson, D.S. & Trinder, T.C. Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro. J. Neurophysiol. 77, 200–206 (1997).

    Article  CAS  Google Scholar 

  47. Marchetti, C., Beato, M. & Nistri, A. Alternating rhythmic activity induced by dorsal root stimulation in the neonatal rat spinal cord in vitro. J. Physiol. (Lond.) 530, 105–112 (2001).

    Article  CAS  Google Scholar 

  48. Bonnot, A., Whelan, P.J., Mentis, G.Z. & O'Donovan, M.J. Locomotor-like activity generated by the neonatal mouse spinal cord. Brain Res. Brain Res. Rev. 40, 141–151 (2002).

    Article  Google Scholar 

  49. Stornetta, R.L., Sevigny, C.P. & Guyenet, P.G. Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. J. Comp. Neurol. 444, 191–206 (2002).

    Article  CAS  Google Scholar 

  50. Parkitna, J.R., Engblom, D. & Schutz, G. Generation of Cre recombinase-expressing transgenic mice using bacterial artificial chromosomes. Methods Mol. Biol. 530, 325–342 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Deisseroth for providing us with the ChR2 construct, D. Engblom for technical assistance with BAC cloning and the Karolinska Center for Transgenic Technologies for pronuclear injection. This work was supported by grants from the US National Institutes of Health (R01NS040795-08), the European Union (SPINAL CORD REPAIR), the National Science Foundation (0701166 to K.J.D.), and by the Swedish Medical Research Council, the Karolinska Institutet's foundation for support of graduate students (M.H.) and postdocs (L.B.), Söderbergs Foundation, and Friends of Karolinska Intitutet.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to the design of the experiments. M.H. and L.B. built the mouse construct and performed the expression validation. M.H., K.J.D. and O.K. performed the electrophysiological experiments and analyzed the results. All of the authors contributed to the drafting and writing of the paper.

Corresponding author

Correspondence to Ole Kiehn.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 623 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hägglund, M., Borgius, L., Dougherty, K. et al. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 13, 246–252 (2010). https://doi.org/10.1038/nn.2482

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2482

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing