Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Connectivity reflects coding: a model of voltage-based STDP with homeostasis

Abstract

Electrophysiological connectivity patterns in cortex often have a few strong connections, which are sometimes bidirectional, among a lot of weak connections. To explain these connectivity patterns, we created a model of spike timing–dependent plasticity (STDP) in which synaptic changes depend on presynaptic spike arrival and the postsynaptic membrane potential, filtered with two different time constants. Our model describes several nonlinear effects that are observed in STDP experiments, as well as the voltage dependence of plasticity. We found that, in a simulated recurrent network of spiking neurons, our plasticity rule led not only to development of localized receptive fields but also to connectivity patterns that reflect the neural code. For temporal coding procedures with spatio-temporal input correlations, strong connections were predominantly unidirectional, whereas they were bidirectional under rate-coded input with spatial correlations only. Thus, variable connectivity patterns in the brain could reflect different coding principles across brain areas; moreover, our simulations suggested that plasticity is fast.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the model.
Figure 2: Fitting the model to experimental data.
Figure 3: Burst timing–dependent plasticity.
Figure 4: Weight evolution in an all-to-all connected network of ten neurons.
Figure 5: Plasticity during rate coding.
Figure 6: Temporal-coding procedure.
Figure 7: Receptive fields development.

References

  1. Buonomano, D.V. & Merzenich, M.M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    Article  CAS  Google Scholar 

  2. Dan, Y. & Poo, M. Spike timing–dependent plasticity of neural circuits. Neuron 44, 23–30 (2004).

    Article  CAS  Google Scholar 

  3. Song, S., Sjöström, P.J., Reigl, M., Nelson, S. & Chklovskii, D.B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e350 (2005).

    Article  Google Scholar 

  4. Lefort, S., Tomm, C., Sarria, J.C.F. & Petersen, C.C.H. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    Article  CAS  Google Scholar 

  5. Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat. Rev. Neurosci. 5, 24–34 (2004).

    Article  CAS  Google Scholar 

  6. Hebb, D.O. The Organization of Behavior (Wiley, New York, 1949).

  7. Malenka, R.C. & Bear, M.F. LTP and LTD: an embarassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  Google Scholar 

  8. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  9. Artola, A., Bröcher, S. & Singer, W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347, 69–72 (1990).

    Article  CAS  Google Scholar 

  10. Ngezahayo, A., Schachner, M. & Artola, A. Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. J. Neurosci. 20, 2451–2458 (2000).

    Article  CAS  Google Scholar 

  11. Dudek, S.M. & Bear, M.F. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13, 2910–2918 (1993).

    Article  CAS  Google Scholar 

  12. Gerstner, W., Kempter, R., Van Hemmen, L. & Wagner, H. A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–81 (1996).

    Article  CAS  Google Scholar 

  13. Legenstein, R., Naeger, C. & Maass, W. What can a neuron learn with spike timing–dependent plasticity? Neural Comput. 17, 2337–2382 (2005).

    Article  Google Scholar 

  14. Gerstner, W. & Kistler, W.M. Spiking Neuron Models (Cambridge University Press, New York, 2002).

  15. Lisman, J. & Spruston, N. Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nat. Neurosci. 8, 839–841 (2005).

    Article  CAS  Google Scholar 

  16. Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B. Rate, timing and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).

    Article  Google Scholar 

  17. Shouval, H.Z., Bear, M.F. & Cooper, L.N. A unified model of NMDA receptor dependent bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. USA 99, 10831–10836 (2002).

    Article  CAS  Google Scholar 

  18. Lisman, J.E. & Zhabotinsky, A.M. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31, 191–201 (2001).

    Article  CAS  Google Scholar 

  19. Song, S. & Abbott, L.F. Cortical development and remapping through spike timing–dependent plasticity. Neuron 32, 339–350 (2001).

    Article  CAS  Google Scholar 

  20. Lubenov, E.V. & Siapas, A.G. Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58, 118–131 (2008).

    Article  CAS  Google Scholar 

  21. Levy, N., Horn, D., Meilijson, I. & Ruppin, E. Distributed synchrony in a cell assembly of spiking neurons. Neural Netw. 14, 815–824 (2001).

    Article  CAS  Google Scholar 

  22. Morrison, A., Aertsen, A. & Diesmann, M. Spike timing–dependent plasticity in balanced random networks. Neural Comput. 19, 1437–1467 (2007).

    Article  Google Scholar 

  23. Izhikevich, E.M. & Edelman, G.M. Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. USA 105, 3593–3598 (2008).

    Article  CAS  Google Scholar 

  24. Cooper, L.N., Intrator, N., Blais, B.S. & Shouval, H.Z. Theory of Cortical Plasticity (World Scientific, Singapore, 2004).

  25. Miller, K.D. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity dependent competition between ON- and OFF-center inputs. J. Neurosci. 14, 409–441 (1994).

    Article  CAS  Google Scholar 

  26. Senn, W., Tsodyks, M. & Markram, H. An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Comput. 13, 35–67 (2001).

    Article  CAS  Google Scholar 

  27. Pfister, J.-P. & Gerstner, W. Triplets of spikes in a model of spike timing–dependent plasticity. J. Neurosci. 26, 9673–9682 (2006).

    Article  CAS  Google Scholar 

  28. O'Connor, D.H., Wittenberg, G.M. & Wang, S.S.H. Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. J. Neurophysiol. 94, 1565–1573 (2005).

    Article  Google Scholar 

  29. Turrigiano, G.G. & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  30. Nevian, T. & Sakmann, B. Spine Ca2+ signaling in spike timing–dependent plasticity. J. Neurosci. 26, 11001–11013 (2006).

    Article  CAS  Google Scholar 

  31. Kampa, B.M., Letzkus, J.J. & Stuart, G.J. Requirement of dendritic calcium spikes for induction of spike timing–dependent synaptic plasticity. J. Physiol. (Lond.) 574, 283–290 (2006).

    Article  CAS  Google Scholar 

  32. Kozloski, J. & Cecchi, G.A. Topological effects of synaptic spike timing–dependent plasticity. Preprint at <http://arxiv.org/abs/0810.0029> (2008).

  33. Jadhav, S.P., Wolfe, J. & Feldman, D.E. Sparse temporal coding of elementary tactile features during active whisker sensation. Nat. Neurosci. (2009).

  34. Blais, B.S., Intrator, N., Shouval, H. & Cooper, L. Receptive field formation in natural scene environments. Comparison of single-cell learning rules. Neural Comput. 10, 1797–1813 (1998).

    Article  CAS  Google Scholar 

  35. Olshausen, B.A. & Field, D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    Article  CAS  Google Scholar 

  36. Hyvärinen, A., Karhunen, J. & Oja, E. Independent Component Analysis (Wiley, New York, 2001).

  37. Oja, E. A simplified neuron as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982).

    Article  CAS  Google Scholar 

  38. Wang, H.X., Gerkin, R.C., Nauen, D.W. & Bi, G.-Q. Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat. Neurosci. 8, 187–193 (2005).

    Article  CAS  Google Scholar 

  39. Saudargiene, A., Porr, B. & Wörgötter, F. How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput. 16, 595–626 (2004).

    Article  Google Scholar 

  40. Brader, J.M., Senn, W. & Fusi, S. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912 (2007).

    Article  Google Scholar 

  41. Clopath, C., Ziegler, L., Vasilaki, E., Büsing, L. & Gerstner, W. Tag-trigger consolidation: a model of early and late long-term potentiation and depression. PLOS Comput. Biol. 4, e1000248 (2008).

    Article  Google Scholar 

  42. Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641–654 (2003).

    Article  Google Scholar 

  43. Sjöström, P.J. & Häusser, M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51, 227–238 (2006).

    Article  Google Scholar 

  44. Tsodyks, M.V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).

    Article  CAS  Google Scholar 

  45. Frey, U. & Morris, R.G.M. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    Article  CAS  Google Scholar 

  46. Remy, S. & Spruston, N. Dendritic spikes induce single-burst long-term potentiation. PNAS 104, 17192–17197 (2007).

    Article  CAS  Google Scholar 

  47. Hardie, J. & Spruston, N. Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons. J. Neurosci. 29, 3233–3241 (2009).

    Article  CAS  Google Scholar 

  48. Golding, N.L., Staff, N.P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  CAS  Google Scholar 

  49. Brette, R. & Gerstner, W. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005).

    Article  Google Scholar 

  50. Badel, L. et al. Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J. Neurophysiol. 99, 656–666 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European project FACETS and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.C. developed the model and carried out the experiments. L.B. and E.V. participated in discussions. W.G. supervised the project and wrote most of the manuscript.

Corresponding author

Correspondence to Claudia Clopath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 803 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clopath, C., Büsing, L., Vasilaki, E. et al. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13, 344–352 (2010). https://doi.org/10.1038/nn.2479

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing