Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amyloid beta from axons and dendrites reduces local spine number and plasticity

Abstract

Excessive synaptic loss is thought to be one of the earliest events in Alzheimer's disease. Amyloid beta (Aβ), a peptide secreted in an activity-modulated manner by neurons, has been implicated in the pathogenesis of Alzheimer's disease by removing dendritic spines, sites of excitatory synaptic transmission. However, issues regarding the subcellular source of Aβ, as well as the mechanisms of its production and actions that lead to synaptic loss, remain poorly understood. In rat organotypic slices, we found that acute overproduction of either axonal or dendritic Aβ reduced spine density and plasticity at nearby (5–10 μm) dendrites. The production of Aβ and its effects on spines were sensitive to blockade of action potentials or nicotinic receptors; the effects of Aβ (but not its production) were sensitive to NMDA receptor blockade. Notably, only 30–60 min blockade of Aβ overproduction permitted induction of plasticity. Our results indicate that continuous overproduction of Aβ at dendrites or axons acts locally to reduce the number and plasticity of synapses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Dendritic Aβ reduces local spine density in an activity-dependent manner.
Figure 2: Axonal Aβ reduces local spine density in an activity-dependent manner.
Figure 3: Aβ secretion is sensitive to blockade of action potentials or nAChRs, but not to blockade of NMDA receptors.
Figure 4: Synthetic Aβ-induced spine loss can be rescued by blockade of NMDA receptors, but not by blockade of action potentials or nAChRs.
Figure 5: Acute overproduction of Aβ reduces spine structural plasticity by NMDAR- and nAChR-dependent mechanisms.
Figure 6: Axonal secretion of Aβ reduces local spine structural plasticity.
Figure 7: Dendritic secretion of Aβ reduces local spine structural plasticity.

References

  1. Terry, R.D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  Google Scholar 

  2. Walsh, D.M. & Selkoe, D.J. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44, 181–193 (2004).

    Article  CAS  Google Scholar 

  3. Lacor, P.N. et al. Synaptic targeting by Alzheimer's-related amyloid beta oligomers. J. Neurosci. 24, 10191–10200 (2004).

    Article  CAS  Google Scholar 

  4. Hsieh, H. et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843 (2006).

    Article  CAS  Google Scholar 

  5. Shankar, G.M. et al. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866–2875 (2007).

    Article  CAS  Google Scholar 

  6. Shrestha, B.R. et al. Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Mol. Cell. Neurosci. 33, 274–282 (2006).

    Article  CAS  Google Scholar 

  7. Calabrese, B. et al. Rapid, concurrent alterations in pre- and postsynaptic structure induced by naturally-secreted amyloid-beta protein. Mol. Cell. Neurosci. 35, 183–193 (2007).

    Article  CAS  Google Scholar 

  8. Evans, N.A. et al. Abeta(1–42) reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: a quantitative analysis. J. Neurosci. Methods 175, 96–103 (2008).

    Article  CAS  Google Scholar 

  9. Lacor, P.N. et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27, 796–807 (2007).

    Article  CAS  Google Scholar 

  10. Lanz, T.A., Carter, D.B. & Merchant, K.M. Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol. Dis. 13, 246–253 (2003).

    Article  CAS  Google Scholar 

  11. Jacobsen, J.S. et al. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 103, 5161–5166 (2006).

    Article  CAS  Google Scholar 

  12. Spires, T.L. et al. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J. Neurosci. 25, 7278–7287 (2005).

    Article  CAS  Google Scholar 

  13. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    Article  CAS  Google Scholar 

  14. Snyder, E.M. et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat. Neurosci. 8, 1051–1058 (2005).

    Article  CAS  Google Scholar 

  15. Almeida, C.G. et al. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol. Dis. 20, 187–198 (2005).

    Article  CAS  Google Scholar 

  16. Ting, J.T., Kelley, B.G., Lambert, T.J., Cook, D.G. & Sullivan, J.M. Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms. Proc. Natl. Acad. Sci. USA 104, 353–358 (2007).

    Article  CAS  Google Scholar 

  17. Walsh, D.M. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  Google Scholar 

  18. Chapman, P.F. et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271–276 (1999).

    Article  CAS  Google Scholar 

  19. Stéphan, A., Laroche, S. & Davis, S. Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J. Neurosci. 21, 5703–5714 (2001).

    Article  Google Scholar 

  20. Cleary, J.P. et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84 (2005).

    Article  CAS  Google Scholar 

  21. Klyubin, I. et al. Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat. Med. 11, 556–561 (2005).

    Article  CAS  Google Scholar 

  22. Hartman, R.E. et al. Treatment with an amyloid-beta antibody ameliorates plaque load, learning deficits and hippocampal long-term potentiation in a mouse model of Alzheimer's disease. J. Neurosci. 25, 6213–6220 (2005).

    Article  CAS  Google Scholar 

  23. Walsh, D.M. et al. Certain inhibitors of synthetic amyloid beta-peptide (Abeta) fibrillogenesis block oligomerization of natural Abeta and thereby rescue long-term potentiation. J. Neurosci. 25, 2455–2462 (2005).

    Article  CAS  Google Scholar 

  24. Morgan, D. et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    Article  CAS  Google Scholar 

  25. Kopec, C.D., Li, B., Wei, W., Boehm, J. & Malinow, R. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J. Neurosci. 26, 2000–2009 (2006).

    Article  CAS  Google Scholar 

  26. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    Article  CAS  Google Scholar 

  27. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  Google Scholar 

  28. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  Google Scholar 

  29. Cirrito, J.R. et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48, 913–922 (2005).

    Article  CAS  Google Scholar 

  30. Buckner, R.L. et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005).

    Article  CAS  Google Scholar 

  31. Lazarov, O., Lee, M., Peterson, D.A. & Sisodia, S.S. Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J. Neurosci. 22, 9785–9793 (2002).

    Article  CAS  Google Scholar 

  32. Buxbaum, J.D. et al. Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J. Neurosci. 18, 9629–9637 (1998).

    Article  CAS  Google Scholar 

  33. Koo, E.H. et al. Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc. Natl. Acad. Sci. USA 87, 1561–1565 (1990).

    Article  CAS  Google Scholar 

  34. Ferreira, A., Caceres, A. & Kosik, K.S. Intraneuronal compartments of the amyloid precursor protein. J. Neurosci. 13, 3112–3123 (1993).

    Article  CAS  Google Scholar 

  35. Sisodia, S.S., Koo, E.H., Hoffman, P.N., Perry, G. & Price, D.L. Identification and transport of full-length amyloid precursor proteins in rat peripheral nervous system. J. Neurosci. 13, 3136–3142 (1993).

    Article  CAS  Google Scholar 

  36. Xia, W. et al. A specific enzyme-linked immunosorbent assay for measuring beta-amyloid protein oligomers in human plasma and brain tissue of patients with Alzheimer disease. Arch. Neurol. 66, 190–199 (2009).

    Article  Google Scholar 

  37. Kaether, C., Skehel, P. & Dotti, C.G. Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol. Biol. Cell 11, 1213–1224 (2000).

    Article  CAS  Google Scholar 

  38. Shankar, G.M. et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  Google Scholar 

  39. Otmakhov, N. et al. Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. J. Neurophysiol. 91, 1955–1962 (2004).

    Article  CAS  Google Scholar 

  40. Changeux, J.P., Kasai, M. & Lee, C.Y. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc. Natl. Acad. Sci. USA 67, 1241–1247 (1970).

    Article  CAS  Google Scholar 

  41. Small, S.A. & Gandy, S. Sorting through the cell biology of Alzheimer's disease: intracellular pathways to pathogenesis. Neuron 52, 15–31 (2006).

    Article  CAS  Google Scholar 

  42. Sheng, J.G., Price, D.L. & Koliatsos, V.E. Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J. Neurosci. 22, 9794–9799 (2002).

    Article  CAS  Google Scholar 

  43. Klyubin, I. et al. Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J. Neurosci. 28, 4231–4237 (2008).

    Article  CAS  Google Scholar 

  44. Jones, I.W., Barik, J., O'Neill, M.J. & Wonnacott, S. Alpha bungarotoxin-1.4 nm gold: a novel conjugate for visualising the precise subcellular distribution of alpha 7* nicotinic acetylcholine receptors. J. Neurosci. Methods 134, 65–74 (2004).

    Article  CAS  Google Scholar 

  45. Fabian-Fine, R. et al. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J. Neurosci. 21, 7993–8003 (2001).

    Article  CAS  Google Scholar 

  46. Dineley, K.T., Bell, K.A., Bui, D. & Sweatt, J.D. Beta-amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. J. Biol. Chem. 277, 25056–25061 (2002).

    Article  CAS  Google Scholar 

  47. Dani, J.A. & Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699–729 (2007).

    Article  CAS  Google Scholar 

  48. Raschetti, R., Albanese, E., Vanacore, N. & Maggini, M. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomized trials. PLoS Med. 4, e338 (2007).

    Article  Google Scholar 

  49. Coan, E.J., Irving, A.J. & Collingridge, G.L. Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. Neurosci. Lett. 105, 205–210 (1989).

    Article  CAS  Google Scholar 

  50. Molnár, Z. et al. Enhancement of NMDA responses by beta-amyloid peptides in the hippocampus in vivo. Neuroreport 15, 1649–1652 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Malinow laboratory for helpful discussions, J. Huang for careful reading of the manuscript and N. Dawkins and I. Hunton for expert technical assistance. This work was supported by grants from the US National Institutes of Health (R.M.), the Cure Alzheimer's Fund (R.M.), Eisai (H.H.) and the Leslie C. Quick Fellowship (W.W.).

Author information

Authors and Affiliations

Authors

Contributions

W.W., L.N.N., H.W.K. and H.H. designed and conducted the experiments and analyzed data. S.S. and R.M. designed experiments and supervised the project.

Corresponding author

Correspondence to Roberto Malinow.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 662 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wei, W., Nguyen, L., Kessels, H. et al. Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat Neurosci 13, 190–196 (2010). https://doi.org/10.1038/nn.2476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing