Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane

Abstract

Despite their low abundance, phosphoinositides are critical regulators of intracellular signaling and membrane compartmentalization. However, little is known of phosphoinositide function at the postsynaptic membrane. Here we show that continuous synthesis and availability of phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) at the postsynaptic terminal is necessary for sustaining synaptic function in rat hippocampal neurons. This requirement was specific for synaptic, but not extrasynaptic, AMPA receptors, nor for NMDA receptors. PIP3 downregulation impaired PSD-95 accumulation in spines. Concomitantly, AMPA receptors became more mobile and migrated from the postsynaptic density toward the perisynaptic membrane within the spine, leading to synaptic depression. Notably, these effects were only revealed after prolonged inhibition of PIP3 synthesis or by direct quenching of this phosphoinositide at the postsynaptic cell. Therefore, we conclude that a slow, but constant, turnover of PIP3 at synapses is required for maintaining AMPA receptor clustering and synaptic strength under basal conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of PH-GRP1 in hippocampal neurons and specific binding to PIP3.
Figure 2: Bidirectional modulation of AMPA-receptor mediated currents by PIP3.
Figure 3: Inhibition of PIP3 synthesis produces a slow and gradual depression of AMPA receptor-mediated transmission.
Figure 4: PIP3 is required for LTP and affects both constitutively cycling and regulated populations of AMPA receptors.
Figure 5: Depletion of PIP3 leads to the accumulation of AMPA receptors in dendritic spines.
Figure 6: Depletion of PIP3 impairs PSD-95 accumulation in spines and increases surface mobility of GluA2 recombinant receptors.
Figure 7: Depletion of PIP3 causes a redistribution of AMPARs between the PSD and extrasynaptic membrane.
Figure 8: Inhibition of glutamate reuptake abolishes PH-GRP1-induced depression of AMPA receptor-mediated transmission.

Similar content being viewed by others

References

  1. Cantley, L.C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  Google Scholar 

  2. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  Google Scholar 

  3. Wenk, M.R. & De Camilli, P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl. Acad. Sci. USA 101, 8262–8269 (2004).

    Article  CAS  Google Scholar 

  4. Sanna, P.P. et al. Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J. Neurosci. 22, 3359–3365 (2002).

    Article  CAS  Google Scholar 

  5. Opazo, P., Watabe, A.M., Grant, S.G. & O'Dell, T.J. Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J. Neurosci. 23, 3679–3688 (2003).

    Article  CAS  Google Scholar 

  6. Man, H.Y. et al. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 38, 611–624 (2003).

    Article  CAS  Google Scholar 

  7. Qin, Y. et al. State-dependent Ras signaling and AMPA receptor trafficking. Genes Dev. 19, 2000–2015 (2005).

    Article  CAS  Google Scholar 

  8. Horne, E.A. & Dell'Acqua, M.L. Phospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long-term depression. J. Neurosci. 27, 3523–3534 (2007).

    Article  CAS  Google Scholar 

  9. Shepherd, J.D. & Huganir, R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    Article  CAS  Google Scholar 

  10. Kennedy, M.J. & Ehlers, M.D. Organelles and trafficking machinery for postsynaptic plasticity. Annu. Rev. Neurosci. 29, 325–362 (2006).

    Article  CAS  Google Scholar 

  11. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  Google Scholar 

  12. Menager, C., Arimura, N., Fukata, Y. & Kaibuchi, K. PIP3 is involved in neuronal polarization and axon formation. J. Neurochem. 89, 109–118 (2004).

    Article  CAS  Google Scholar 

  13. Jaworski, J., Spangler, S., Seeburg, D.P., Hoogenraad, C.C. & Sheng, M. Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J. Neurosci. 25, 11300–11312 (2005).

    Article  CAS  Google Scholar 

  14. Kumar, V., Zhang, M.X., Swank, M.W., Kunz, J. & Wu, G.Y. Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J. Neurosci. 25, 11288–11299 (2005).

    Article  CAS  Google Scholar 

  15. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  16. Gerges, N.Z., Backos, D.S., Rupasinghe, C.N., Spaller, M.R. & Esteban, J.A. Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane. EMBO J. 25, 1623–1634 (2006).

    Article  CAS  Google Scholar 

  17. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    Article  CAS  Google Scholar 

  18. Klarlund, J.K., Tsiaras, W., Holik, J.J., Chawla, A. & Czech, M.P. Distinct polyphosphoinositide binding selectivities for pleckstrin homology domains of GRP1-like proteins based on diglycine versus triglycine motifs. J. Biol. Chem. 275, 32816–32821 (2000).

    Article  CAS  Google Scholar 

  19. Helms, M.N. et al. Phosphatidylinositol 3,4,5-trisphosphate mediates aldosterone stimulation of epithelial sodium channel (ENaC) and interacts with gamma-ENaC. J. Biol. Chem. 280, 40885–40891 (2005).

    Article  CAS  Google Scholar 

  20. Varnai, P. et al. Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J. Cell Sci. 118, 4879–4888 (2005).

    Article  CAS  Google Scholar 

  21. Klippel, A. et al. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Cell. Biol. 16, 4117–4127 (1996).

    Article  CAS  Google Scholar 

  22. Wu, L., Bauer, C.S., Zhen, X.G., Xie, C. & Yang, J. Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2 . Nature 419, 947–952 (2002).

    Article  CAS  Google Scholar 

  23. Tong, Q., Gamper, N., Medina, J.L., Shapiro, M.S. & Stockand, J.D. Direct activation of the epithelial Na+ channel by phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate produced by phosphoinositide 3-OH kinase. J. Biol. Chem. 279, 22654–22663 (2004).

    Article  CAS  Google Scholar 

  24. Wenthold, R.J., Petralia, R.S., Blahos, J. II & Niedzielski, A.S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989 (1996).

    Article  CAS  Google Scholar 

  25. Collingridge, G.L., Olsen, R.W., Peters, J. & Spedding, M. A nomenclature for ligand-gated ion channels. Neuropharmacology 56, 2–5 (2009).

    Article  CAS  Google Scholar 

  26. Malinow, R., Mainen, Z.F. & Hayashi, Y. LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol. 10, 352–357 (2000).

    Article  CAS  Google Scholar 

  27. Lu, W. et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62, 254–268 (2009).

    Article  CAS  Google Scholar 

  28. Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Article  CAS  Google Scholar 

  29. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  30. Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    Article  CAS  Google Scholar 

  31. Schnell, E. et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl. Acad. Sci. USA 99, 13902–13907 (2002).

    Article  CAS  Google Scholar 

  32. Ehrlich, I. & Malinow, R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J. Neurosci. 24, 916–927 (2004).

    Article  CAS  Google Scholar 

  33. Stein, V., House, D.R., Bredt, D.S. & Nicoll, R.A. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J. Neurosci. 23, 5503–5506 (2003).

    Article  CAS  Google Scholar 

  34. Kopec, C.D., Li, B., Wei, W., Boehm, J. & Malinow, R. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J. Neurosci. 26, 2000–2009 (2006).

    Article  CAS  Google Scholar 

  35. Tomita, S. et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J. Cell Biol. 161, 805–816 (2003).

    Article  CAS  Google Scholar 

  36. Harris, K.M., Jensen, F.E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    Article  CAS  Google Scholar 

  37. Bridges, R.J., Stanley, M.S., Anderson, M.W., Cotman, C.W. & Chamberlin, A.R. Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer. J. Med. Chem. 34, 717–725 (1991).

    Article  CAS  Google Scholar 

  38. Maki, R., Robinson, M.B. & Dichter, M.A. The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylate depresses excitatory synaptic transmission via a presynaptic mechanism in cultured hippocampal neurons. J. Neurosci. 14, 6754–6762 (1994).

    Article  CAS  Google Scholar 

  39. Li, S. et al. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788–801 (2009).

    Article  CAS  Google Scholar 

  40. Isaacson, J.S. & Nicoll, R.A. The uptake inhibitor L-trans-PDC enhances responses to glutamate but fails to alter the kinetics of excitatory synaptic currents in the hippocampus. J. Neurophysiol. 70, 2187–2191 (1993).

    Article  CAS  Google Scholar 

  41. Horwood, J.M., Dufour, F., Laroche, S. & Davis, S. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur. J. Neurosci. 23, 3375–3384 (2006).

    Article  Google Scholar 

  42. Sutton, G. & Chandler, L.J. Activity-dependent NMDA receptor-mediated activation of protein kinase B/Akt in cortical neuronal cultures. J. Neurochem. 82, 1097–1105 (2002).

    Article  CAS  Google Scholar 

  43. Elias, G.M. et al. Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron 52, 307–320 (2006).

    Article  CAS  Google Scholar 

  44. Zimmermann, P. The prevalence and significance of PDZ domain-phosphoinositide interactions. Biochim. Biophys. Acta 1761, 947–956 (2006).

    Article  CAS  Google Scholar 

  45. Heo, W.D. et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461 (2006).

    Article  CAS  Google Scholar 

  46. Jin, W. et al. Lipid binding regulates synaptic targeting of PICK1, AMPA receptor trafficking, and synaptic plasticity. J. Neurosci. 26, 2380–2390 (2006).

    Article  CAS  Google Scholar 

  47. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  48. Phend, K.D., Rustioni, A. & Weinberg, R.J. An osmium-free method of epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry. J. Histochem. Cytochem. 43, 283–292 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Holz (University of Michigan) for the plasmid containing the PH-PLC sequence, A. Lee (University of Michigan) for the plasmid containing the catalytic domain of mouse PI3K (p110α), C. Dotti (Katholieke Universiteit Leuven) for the membrane-anchored GFP-CAAX construct, R. Malinow (University of California, San Diego) for the SEP-GluA2 construct and L. Chen (University of California, Berkeley) for facilitating some of the experiments carried out by K.L.A. We also thank S. Jurado and members of the Esteban laboratory for critical reading of this manuscript, and S. Fisher, E. Stuenkel, G. Murphy and R. Holz for discussions. This work was supported by grants from the US National Institute of Mental Health (J.A.E. and J.R.M.), the Dana Foundation (J.A.E.) and the Spanish Ministry of Science and Innovation (J.A.E.). M.F.-M. and S.K. are supported by postdoctoral contracts, and M.R. by a predoctoral fellowship, from the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Contributions

K.L.A. is responsible for most of the experimental work. M.R., M.F.-M. and S.K. contributed some of the biochemical and imaging experiments. C.N.P. carried out cloning and provided technical support. J.R.M. designed and supervised some of the experiments. K.L.A. and J.A.E. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to José A Esteban.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 1072 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arendt, K., Royo, M., Fernández-Monreal, M. et al. PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat Neurosci 13, 36–44 (2010). https://doi.org/10.1038/nn.2462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2462

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing