Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor

Abstract

During the development of peripheral ganglia, 50% of the neurons that are generated undergo apoptosis. How the massive numbers of corpses are removed is unknown. We found that satellite glial cell precursors are the primary phagocytic cells for apoptotic corpse removal in developing mouse dorsal root ganglia (DRG). Confocal and electron microscopic analysis revealed that glial precursors, rather than macrophages, were responsible for clearing most of the dead DRG neurons. Moreover, we identified Jedi-1, an engulfment receptor, and MEGF10, a purported engulfment receptor, as homologs of the invertebrate engulfment receptors Draper and CED-1 expressed in the glial precursor cells. Expression of Jedi-1 or MEGF10 in fibroblasts facilitated binding to dead neurons, and knocking down either protein in glial cells or overexpressing truncated forms lacking the intracellular domain inhibited engulfment of apoptotic neurons. Together, these results suggest a cellular and molecular mechanism by which neuronal corpses are culled during DRG development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuron corpses in developing DRG are engulfed by BFABP-positive SGC precursors.
Figure 2: Electron micrographs of apoptotic bodies engulfed and ingested by SGC precursors in embryonic E12.5 DRGs.
Figure 3: Glial cells engulf dead neurons induced by NGF withdrawal in vitro.
Figure 4: Putative Draper and CED-1 homologs, Jedi-1 and MEGF10, are expressed in developing peripheral glial cells.
Figure 5: The extracellular domain of Jedi-1 recognizes cell corpses when expressed in C. elegans engulfing cells.
Figure 6: Jedi-1 and MEGF10 expressed in HEK293 cells enable binding to dead neurons.
Figure 7: Ectopic expression of Jedi-1 or MEGF10 in glial cells promotes neuronal corpse engulfment.
Figure 8: Neuronal corpse engulfment by glial cells requires endogenous Jedi-1 and MEGF10.

Similar content being viewed by others

References

  1. Bennet, M.R., Gibson, W.G. & Lemon, G. Neuronal cell death, nerve growth factor and neurotrophic models: 50 years on. Auton. Neurosci. 95, 1–23 (2002).

    Article  CAS  Google Scholar 

  2. Hamburger, V. & Levi-Montalcini, R. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool. 111, 457–501 (1949).

    Article  CAS  Google Scholar 

  3. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  Google Scholar 

  4. Yuan, J., Lipinski, M. & Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron 40, 401–413 (2003).

    Article  CAS  Google Scholar 

  5. Hume, D.A., Perry, V.H. & Gordon, S. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J. Cell Biol. 97, 253–257 (1983).

    Article  CAS  Google Scholar 

  6. Perry, V.H., Hume, D.A. & Gordon, S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15, 313–326 (1985).

    Article  CAS  Google Scholar 

  7. O'Connor, T.M. & Wyttenbach, C.R. Cell death in the embryonic chick spinal cord. J. Cell Biol. 60, 448–459 (1974).

    Article  CAS  Google Scholar 

  8. Pannese, E. The response of the satellite and other non-neuronal cells to the degeneration of neuroblasts in chick embryo spinal ganglia. Cell Tissue Res. 190, 1–14 (1978).

    Article  CAS  Google Scholar 

  9. Bratton, D.L. & Henson, P.M. Apoptotic cell recognition: will the real phosphatidylserine receptor(s) please stand up? Curr. Biol. 18, R76–R79 (2008).

    Article  CAS  Google Scholar 

  10. Gregory, C.D. & Brown, S.B. Apoptosis: eating sensibly. Nat. Cell Biol. 7, 1161–1163 (2005).10.1038/ncb1205-1161

    Article  PubMed  Google Scholar 

  11. Grimsley, C. & Ravichandran, K.S. Cues for apoptotic cell engulfment: eat-me, don't eat-me and come-get-me signals. Trends Cell Biol. 13, 648–656 (2003).

    Article  CAS  Google Scholar 

  12. Henson, P.M. & Hume, D.A. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 27, 244–250 (2006).

    Article  CAS  Google Scholar 

  13. Freeman, M.R., Delrow, J., Kim, J., Johnson, E. & Doe, C.Q. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567–580 (2003).

    Article  CAS  Google Scholar 

  14. Zhou, Z., Hartwieg, E. & Horvitz, H.R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43–56 (2001).

    Article  CAS  Google Scholar 

  15. Awasaki, T. et al. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50, 855–867 (2006).

    Article  CAS  Google Scholar 

  16. MacDonald, J.M. et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).

    Article  CAS  Google Scholar 

  17. Manaka, J. et al. Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. J. Biol. Chem. 279, 48466–48476 (2004).

    Article  CAS  Google Scholar 

  18. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  Google Scholar 

  19. Hamon, Y. et al. Cooperation between engulfment receptors: the case of ABCA1 and MEGF10. PLoS One 1, e120 (2006).

    Article  Google Scholar 

  20. Fariñas, I., Yoshida, C.K., Backus, C. & Reichardt, L.F. Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17, 1065–1078 (1996).

    Article  Google Scholar 

  21. White, F.A. et al. Synchronous onset of NGF and TrkA survival dependence in developing dorsal root ganglia. J. Neurosci. 16, 4662–4672 (1996).

    Article  CAS  Google Scholar 

  22. Kurtz, A. et al. The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120, 2637–2649 (1994).

    CAS  PubMed  Google Scholar 

  23. Schreiner, S. et al. Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development 134, 3271–3281 (2007).

    Article  CAS  Google Scholar 

  24. Taylor, M.K., Yeager, K. & Morrison, S.J. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 134, 2435–2447 (2007).

    Article  CAS  Google Scholar 

  25. Woodhoo, A., Dean, C.H., Droggiti, A., Mirsky, R. & Jessen, K.R. The trunk neural crest and its early glial derivatives: a study of survival responses, developmental schedules and autocrine mechanisms. Mol. Cell. Neurosci. 25, 30–41 (2004).

    Article  CAS  Google Scholar 

  26. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  Google Scholar 

  27. Fariñas, I., Cano-Jaimez, M., Bellmunt, E. & Soriano, M. Regulation of neurogenesis by neurotrophins in developing spinal sensory ganglia. Brain Res. Bull. 57, 809–816 (2002).

    Article  Google Scholar 

  28. Maro, G.S. et al. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat. Neurosci. 7, 930–938 (2004).

    Article  CAS  Google Scholar 

  29. Ernfors, P., Lee, K.F., Kucera, J. & Jaenisch, R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77, 503–512 (1994).

    Article  CAS  Google Scholar 

  30. Tessarollo, L., Vogel, K.S., Palko, M.E., Reid, S.W. & Parada, L.F. Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc. Natl. Acad. Sci. USA 91, 11844–11848 (1994).

    Article  CAS  Google Scholar 

  31. Murphy, P. et al. The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Development 122, 2847–2857 (1996).

    CAS  PubMed  Google Scholar 

  32. Okada, A., Lansford, R., Weimann, J.M., Fraser, S.E. & McConnell, S.K. Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein. Exp. Neurol. 156, 394–406 (1999).

    Article  CAS  Google Scholar 

  33. Hoopfer, E.D. et al. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50, 883–895 (2006).

    Article  CAS  Google Scholar 

  34. Suzuki, E. & Nakayama, M. MEGF10 is a mammalian ortholog of CED-1 that interacts with clathrin assembly protein complex 2 medium chain and induces large vacuole formation. Exp. Cell Res. 313, 3729–3742 (2007).

    Article  CAS  Google Scholar 

  35. Griffin, J.W., George, R. & Ho, T. Macrophage systems in peripheral nerves. A review. J. Neuropathol. Exp. Neurol. 52, 553–560 (1993).

    Article  CAS  Google Scholar 

  36. Hirata, K. & Kawabuchi, M. Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration. Microsc. Res. Tech. 57, 541–547 (2002).

    Article  Google Scholar 

  37. Bishop, D.L., Misgeld, T., Walsh, M.K., Gan, W.B. & Lichtman, J.W. Axon branch removal at developing synapses by axosome shedding. Neuron 44, 651–661 (2004).

    Article  CAS  Google Scholar 

  38. Aldskogius, H. & Arvidsson, J. Nerve cell degeneration and death in the trigeminal ganglion of the adult rat following peripheral nerve transection. J. Neurocytol. 7, 229–250 (1978).

    Article  CAS  Google Scholar 

  39. Hanani, M. Satellite glial cells in sensory ganglia: from form to function. Brain Res. Brain Res. Rev. 48, 457–476 (2005).

    Article  CAS  Google Scholar 

  40. Fenzi, F., Benedetti, M.D., Moretto, G. & Rizzuto, N. Glial cell and macrophage reactions in rat spinal ganglion after peripheral nerve lesions: an immunocytochemical and morphometric study. Arch. Ital. Biol. 139, 357–365 (2001).

    CAS  PubMed  Google Scholar 

  41. Yu, X., Lu, N. & Zhou, Z. Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol. 6, e61 (2008).

    Article  Google Scholar 

  42. Ravichandran, K.S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol. 7, 964–974 (2007).

    Article  CAS  Google Scholar 

  43. Reddien, P.W., Cameron, S. & Horvitz, H.R. Phagocytosis promotes programmed cell death in C. elegans. Nature 412, 198–202 (2001).

    Article  CAS  Google Scholar 

  44. Kurant, E., Axelrod, S., Leaman, D. & Gaul, U. Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133, 498–509 (2008).

    Article  CAS  Google Scholar 

  45. Ziegenfuss, J.S. et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signaling. Nature 453, 935–939 (2008).

    Article  CAS  Google Scholar 

  46. Nagata, S. Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol. Rev. 220, 237–250 (2007).

    Article  CAS  Google Scholar 

  47. Silva, M.T., do Vale, A. & Dos Santos, N.M. Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 13, 463–482 (2008).

    Article  Google Scholar 

  48. Wu, H.H. et al. Autoregulation of neurogenesis by GDF11. Neuron 37, 197–207 (2003).

    Article  CAS  Google Scholar 

  49. Jin, Y., Jorgensen, E., Hartwieg, E. & Horvitz, H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission, but not synaptic development. J. Neurosci. 19, 539–548 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Statistics and Methodology Services at the Vanderbilt Kennedy Center for assistance on statistical analysis and C. Yoon, C. Jones and other members of the Carter laboratory for technical assistance and helpful suggestions. This work was supported by grants from the US National Institutes of Health (NS048249 and NS064278 to B.D.C., GM067848 to Z.Z.), a Muscular Dystrophy Association Development grant (MDA4023) to H.-H.W., a US National Institutes of Health Minority Access to Research Careers Predoctoral Fellowship (GM079911) to V.V., and the Ministerio de Ciencia e Innovación (SAF), Ministerio de Sanidad (TerCel and Ciberned), Fundación la Caixa, and Generalitat Valenciana (Prometeo) to I.F.

Author information

Authors and Affiliations

Authors

Contributions

H.-H.W. and B.D.C. initiated and developed the overall concept and design of the project. H.-H.W. also performed, analyzed and interpreted most of the experiments and prepared the initial version of the manuscript. E.B. performed the quantitative histological analysis of neuronal corpse engulfment in Ntf3+/+ and Ntf3−/− mice. J.L.S. generated some of the Jedi-1 and MEGF10 constructs, performed the binding experiment and some of the immunostaining analyses. V.V. performed all of the experiments with C. elegans. C.B. assisted with the immunostaining on sections and generated the shRNA construct for MEGF10. L.F.R. provided technical expertise for electron microscopy analysis and critical intellectual input for this study. I.F. performed the electron microscopy analysis, supervised the quantitative histological analysis and provided intellectual input. Z.Z. designed and supervised the C. elegans study and provided intellectual input. B.D.C. directed the overall project and prepared the final version of the manuscript.

Corresponding author

Correspondence to Bruce D Carter.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 1836 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HH., Bellmunt, E., Scheib, J. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat Neurosci 12, 1534–1541 (2009). https://doi.org/10.1038/nn.2446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2446

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing