Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-generated theta oscillations in the hippocampus


Hippocampal theta rhythm is crucial for spatial memory and is thought to be generated by extrinsic inputs. In contrast, using a complete rat hippocampus in vitro, we found several intrinsic, atropine-resistant theta generators in CA1. These oscillators were organized along the septotemporal axis and arose independently from CA3. Our results suggest that CA1 theta rhythm can emerge from the coupling of multiple autonomous hippocampal theta oscillators.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Descriptive properties of theta rhythm in the isolated hippocampus.
Figure 2: Topography of the spontaneous theta oscillation recorded in CA1.
Figure 3: Synaptic activity during the spontaneous theta oscillations.


  1. Hasselmo, M.E. Hippocampus 15, 936–949 (2005).

    Article  Google Scholar 

  2. Traub, R.D., Miles, R. & Wong, R.K. Science 243, 1319–1325 (1989).

    CAS  Article  Google Scholar 

  3. White, J.A., Banks, M.I., Pearce, R.A. & Kopell, N.J. Proc. Natl. Acad. Sci. USA 97, 8128–8133 (2000).

    CAS  Article  Google Scholar 

  4. Amaral, D.G. & Witter, M.P. Neuroscience 31, 571–591 (1989).

    CAS  Article  Google Scholar 

  5. Bland, B.H. Prog. Neurobiol. 26, 1–54 (1986).

    CAS  Article  Google Scholar 

  6. Buzsáki, G. Neuron 33, 325–340 (2002).

    Article  Google Scholar 

  7. Vanderwolf, C.H. Electroencephalogr. Clin. Neurophysiol. 26, 407–418 (1969).

    CAS  Article  Google Scholar 

  8. Kramis, R., Vanderwolf, C.H. & Bland, B.H. Exp. Neurol. 49, 58–85 (1975).

    CAS  Article  Google Scholar 

  9. Leutgeb, S., Leutgeb, J.K., Treves, A., Moser, M.B. & Moser, E.I. Science 305, 1295–1298 (2004).

    CAS  Article  Google Scholar 

  10. Lubenov, E.V. & Siapas, A.G. Nature 459, 534–549 (2009).

    CAS  Article  Google Scholar 

  11. Fox, S.E., Wolfson, S. & Ranck, J.B. Jr. Exp. Brain Res. 62, 495–508 (1986).

    CAS  Article  Google Scholar 

  12. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsaki, G. J. Neurosci. 19, 274–287 (1999).

    CAS  Article  Google Scholar 

  13. Crépel, V., Khazipov, R. & Ben-Ari, Y. J. Neurophysiol. 77, 2071–2082 (1997).

    Article  Google Scholar 

  14. Andersen, P. & Eccles, J. Nature 196, 645–647 (1962).

    CAS  Article  Google Scholar 

  15. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O. & Somogyi, P. Nature 378, 75–78 (1995).

    CAS  Article  Google Scholar 

Download references


We thank M. Danik, G. Ducharme, C.K. Young, C.T. Dickson and G. Buzsaki for their comments on the manuscript. This work was supported by the Canadian Institute of Health Research, the Natural Sciences and Engineering Research Council of Canada and the Fonds de la Recherche en Santé du Québec. R.G. was supported by the Conrad F. Harrington post-doctoral fellowship from the McGill Faculty of Medicine. J.J. received a Canadian Graduate Scholarship from the Natural Sciences and Engineering Research Council of Canada and S.W. is a Fonds de la recherche en santé du Québec chercheur boursier ''senior.''

Author information

Authors and Affiliations



R.G., J.J. and S.W. designed the experiments, R.G. and J.J. performed the experiments and analyzed the data, and R.G., J.J. and S.W. wrote the paper.

Corresponding author

Correspondence to Sylvain Williams.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Table 1, Supplementary Methods and Supplementary Discussion (PDF 1827 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goutagny, R., Jackson, J. & Williams, S. Self-generated theta oscillations in the hippocampus. Nat Neurosci 12, 1491–1493 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing