A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning

Abstract

Pruning that selectively eliminates neuronal processes is crucial for the refinement of neural circuits during development. In Drosophila, the class IV dendritic arborization neuron (ddaC) undergoes pruning to remove its larval dendrites during metamorphosis. We identified Sox14 as a transcription factor that was necessary and sufficient to mediate dendrite severing during pruning in response to ecdysone signaling. We found that Sox14 mediated dendrite pruning by directly regulating the expression of the target gene mical. mical encodes a large cytosolic protein with multiple domains that are known to associate with cytoskeletal components. mical mutants had marked severing defects during dendrite pruning that were similar to those of sox14 mutants. Overexpression of Mical could significantly rescue pruning defects in sox14 mutants, suggesting that Mical is a major downstream target of Sox14 during pruning. Thus, our findings indicate that a previously unknown pathway composed of Sox14 and its cytoskeletal target Mical governs dendrite severing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sox14 is required for dendrite severing of ddaC neurons during dendrite pruning.
Figure 2: Mical localization is dependent on Sox14 and EcR/Usp in ddaC neurons.
Figure 3: Mical is essential for dendrite severing of ddaC neurons during metamorphosis.
Figure 4: Sox14 overexpression causes precocious dendrite pruning in ddaC neurons in concert with upregulation of Mical.
Figure 5: Mical acts downstream of EcR-B1 and Sox14 during severing.

References

  1. 1

    Luo, L. & O'Leary, D.D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).

    CAS  Article  Google Scholar 

  2. 2

    O'Leary, D.D. & Koester, S.E. Development of projection neuron types, axon pathways and patterned connections of the mammalian cortex. Neuron 10, 991–1006 (1993).

    CAS  Article  Google Scholar 

  3. 3

    MacDonald, J.M. et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Avery, M.A., Sheehan, A.E., Kerr, K.S., Wang, J. & Freeman, M.R. Wld S requires Nmnat1 enzymatic activity and N16-VCP interactions to suppress Wallerian degeneration. J. Cell Biol. 184, 501–513 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Hoopfer, E.D. et al. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50, 883–895 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Tsai, J., Grutzendler, J., Duff, K. & Gan, W.B. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat. Neurosci. 7, 1181–1183 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Li, H., Li, S.H., Yu, Z.X., Shelbourne, P. & Li, X.J. Huntingtin aggregate–associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 21, 8473–8481 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Truman, J.W. Metamorphosis of the central nervous system of Drosophila. J. Neurobiol. 21, 1072–1084 (1990).

    CAS  Article  Google Scholar 

  9. 9

    Lee, T., Lee, A. & Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065–4076 (1999).

    CAS  PubMed  Google Scholar 

  10. 10

    Marin, E.C., Watts, R.J., Tanaka, N.K., Ito, K. & Luo, L. Developmentally programmed remodeling of the Drosophila olfactory circuit. Development 132, 725–737 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Lee, T., Marticke, S., Sung, C., Robinow, S. & Luo, L. Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. Neuron 28, 807–818 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Watts, R.J., Hoopfer, E.D. & Luo, L. Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38, 871–885 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Awasaki, T. & Ito, K. Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr. Biol. 14, 668–677 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Watts, R.J., Schuldiner, O., Perrino, J., Larsen, C. & Luo, L. Glia engulf degenerating axons during developmental axon pruning. Curr. Biol. 14, 678–684 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Awasaki, T. et al. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50, 855–867 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Zhu, S., Chiang, A.S. & Lee, T. Development of the Drosophila mushroom bodies: elaboration, remodeling and spatial organization of dendrites in the calyx. Development 130, 2603–2610 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Brown, H.L., Cherbas, L., Cherbas, P. & Truman, J.W. Use of time-lapse imaging and dominant negative receptors to dissect the steroid receptor control of neuronal remodeling in Drosophila. Development 133, 275–285 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Schubiger, M., Wade, A.A., Carney, G.E., Truman, J.W. & Bender, M. Drosophila EcR-B ecdysone receptor isoforms are required for larval molting and for neuron remodeling during metamorphosis. Development 125, 2053–2062 (1998).

    CAS  PubMed  Google Scholar 

  19. 19

    Williams, D.W. & Truman, J.W. Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 132, 3631–3642 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Kuo, C.T., Jan, L.Y. & Jan, Y.N. Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc. Natl. Acad. Sci. USA 102, 15230–15235 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Lee, H.H., Jan, L.Y. & Jan, Y.N. Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proc. Natl. Acad. Sci. USA 106, 6363–6368 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Kuo, C.T., Zhu, S., Younger, S., Jan, L.Y. & Jan, Y.N. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51, 283–290 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Williams, D.W., Kondo, S., Krzyzanowska, A., Hiromi, Y. & Truman, J.W. Local caspase activity directs engulfment of dendrites during pruning. Nat. Neurosci. 9, 1234–1236 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Ainsley, J.A. et al. Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr. Biol. 13, 1557–1563 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Thummel, C.S. Files on steroids–Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet. 12, 306–310 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Zheng, X. et al. TGF-beta signaling activates steroid hormone receptor expression during neuronal remodeling in the Drosophila brain. Cell 112, 303–315 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Pauli, A. et al. Cell type–specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev. Cell 14, 239–251 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Schuldiner, O. et al. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev. Cell 14, 227–238 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Lee, C.Y. et al. Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr. Biol. 13, 350–357 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Beckstead, R.B., Lam, G. & Thummel, C.S. The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biol. 6, R99 (2005).

    Article  Google Scholar 

  31. 31

    Li, T.R. & White, K.P. Tissue-specific gene expression and ecdysone-regulated genomic networks in Drosophila. Dev. Cell 5, 59–72 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Crémazy, F., Berta, P. & Girard, F. Genome-wide analysis of Sox genes in Drosophila melanogaster. Mech. Dev. 109, 371–375 (2001).

    Article  Google Scholar 

  34. 34

    Sparkes, A.C., Mumford, K.L., Patel, U.A., Newbury, S.F. & Crane-Robinson, C. Characterization of an SRY-like gene, DSox14, from Drosophila. Gene 272, 121–129 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Wang, L. et al. A genetic screen identifies new regulators of steroid-triggered programmed cell death in Drosophila. Genetics 180, 269–281 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Terman, J.R., Mao, T., Pasterkamp, R.J., Yu, H.H. & Kolodkin, A.L. MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. Cell 109, 887–900 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Beuchle, D., Schwarz, H., Langegger, M., Koch, I. & Aberle, H. Drosophila MICAL regulates myofilament organization and synaptic structure. Mech. Dev. 124, 390–406 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Chittaranjan, S. et al. Steroid hormone control of cell death and cell survival: molecular insights using RNAi. PLoS Genet. 5, e1000379 (2009).

    Article  Google Scholar 

  39. 39

    Lefebvre, V., Dumitriu, B., Penzo-Mendez, A., Han, Y. & Pallavi, B. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int. J. Biochem. Cell Biol. 39, 2195–2214 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Suzuki, T. et al. MICAL, a novel CasL interacting molecule, associates with vimentin. J. Biol. Chem. 277, 14933–14941 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Defilippi, P., Di Stefano, P. & Cabodi, S. p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol. 16, 257–263 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Huang, Z., Yazdani, U., Thompson-Peer, K.L., Kolodkin, A.L. & Terman, J.R. Crk-associated substrate (Cas) signaling protein functions with integrins to specify axon guidance during development. Development 134, 2337–2347 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Ndozangue-Touriguine, O., Hamelin, J. & Breard, J. Cytoskeleton and apoptosis. Biochem. Pharmacol. 76, 11–18 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Toran-Allerand, C.D., Singh, M. & Setalo, G., Jr. Novel mechanisms of estrogen action in the brain: new players in an old story. Front. Neuroendocrinol. 20, 97–121 (1999).

    CAS  Article  Google Scholar 

  45. 45

    McCarthy, M.M. Estradiol and the developing brain. Physiol. Rev. 88, 91–124 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Grueber, W.B., Jan, L.Y. & Jan, Y.N. Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 112, 805–818 (2003).

    CAS  Article  Google Scholar 

  47. 47

    Grueber, W.B., Ye, B., Moore, A.W., Jan, L.Y. & Jan, Y.N. Dendrites of distinct classes of Drosophila sensory neurons show different capacities for homotypic repulsion. Curr. Biol. 13, 618–626 (2003).

    CAS  Article  Google Scholar 

  48. 48

    Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank H. Aberle, R. Barrio, Y.N. Jan, W.A. Johnson, the Bloomington Stock Center, Developmental Studies Hybridoma Bank (University of Iowa) and Vienna Drosophila RNAi Center for generously providing antibodies and fly stocks. We thank members of the Yu and Wang laboratories for stimulating discussions and Z.L. Ong for technical assistance. We thank W. Chia, S. Cohen, P. Rorth, S. Roy, J. Varghese and G. Feng for helpful discussions and for reading the manuscript. This work was supported by Temasek Life Sciences Laboratory (F.Y.), Duke–National University of Singapore (MOE2008-T2-1-048 and NRF-RF2009-02 to H.W.), and grants from the US National Institutes of Health and the National Institute of Neurological Disorders and Stroke (RO1NS35165) and the Howard Hughes Medical Institute (A.L.K.). D.K. is supported by the Singapore Millennium Foundation.

Author information

Affiliations

Authors

Contributions

D.K. and Y.G. conducted the majority of the experiments and data analysis on sox14 and mical, respectively. Y.H. contributed to the biochemical experiments. Z.W. and A.L.K. provided reagents for mical. A.B. provided the pupal lethal mutant collection. B.C.L. and F.Y. cosupervised Y.G. F.Y. and H.W. conceptualized and designed the study. F.Y. supervised the project. D.K., H.W. and F.Y. wrote the manuscript.

Corresponding author

Correspondence to Fengwei Yu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 4803 kb)

Supplementary Movie 1

The dynamics of dendrite removal in a ddaC neuron. Confocal time-lapse movie of a wt ppk-GAL4>mCD8GFP labelled ddaC neuron between 4 and 13 h APF. Frames were recorded every 6 minutes. (MOV 4108 kb)

Supplementary Movie 2

Dendritic pruning is blocked in sox14Δ13 homozygotes. Confocal time-lapse movie of a ppk-GAL4>mCD8GFP labelled ddaC derived from a sox14Δ13 mutant pupa between 6 and 10 h APF. No severing or blebbing occurs in sox14 mutants during this period. Frames were recorded every 5 minutes. (MOV 1780 kb)

Supplementary Movie 3

Dendrites of ddaCs are persisting drastically longer in mical15256 homozygotes. Confocal time-lapse recording of a mical15256 homozygous pupa, in which ddaCs are labelled by ppk-EGFP. Frames are recorded from 11 to 17 h APF with 5 minutes intervals. (MOV 4365 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kirilly, D., Gu, Y., Huang, Y. et al. A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning. Nat Neurosci 12, 1497–1505 (2009). https://doi.org/10.1038/nn.2415

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing