Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AP2γ regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex

A Corrigendum to this article was published on 01 May 2010

This article has been updated

Abstract

An important feature of the cerebral cortex is its layered organization, which is modulated in an area-specific manner. We found that the transcription factor AP2γ regulates laminar fate in a region-specific manner. Deletion of AP2γ (also known as Tcfap2c) during development resulted in a specific reduction of upper layer neurons in the occipital cortex, leading to impaired function and enhanced plasticity of the adult visual cortex. AP2γ functions in apical progenitors, and its absence resulted in mis-specification of basal progenitors in the occipital cortex at the time at which upper layer neurons were generated. AP2γ directly regulated the basal progenitor fate determinants Math3 (also known as Neurod4) and Tbr2, and its overexpression promoted the generation of layer II/III neurons in a time- and region-specific manner. Thus, AP2γ acts as a regulator of basal progenitor fate, linking regional and laminar specification in the mouse developing cerebral cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AP2γ expression in the mouse brain.
Figure 2: Cell division and basal progenitor identity in the cerebral cortex of AP2γ−/− mice at mid-neurogenesis.
Figure 3: Regulation of basal progenitor transcripts by AP2γ.
Figure 4: AP2γ overexpression in the developing cortex.
Figure 5: Upper layer neuron defects in adult AP2γ−/− mice.
Figure 6: Neurogenesis at E14 in the cerebral cortex of AP2γ−/− mice.
Figure 7: Visual physiology of wild-type and AP2γ−/− cortices.

Similar content being viewed by others

Accession codes

Accessions

EMBL/GenBank/DDBJ

Gene Expression Omnibus

Change history

  • 25 September 2009

    In the version of this article initially published, one of the corresponding authors’ email addresses was misspelled. It should be luisapinto@ecsaude.uminho.pt. In addition, errors occurred in some of the numbers listed in the last subsection of the Results section. Instead of “Notably, AP2γ−/− mice also showed alterations in cortical binocularity (Fig. 7c,d and Supplementary Table 2) and a tendency toward an increased latency of visual response (wild type = 109.95 ms, AP2γ/− = 127.19 ms; Supplementary Table 2). […] Indeed, monocular deprivation for 3 d caused a significant change in binocularity in adult AP2γ−/− (P = 0.027), but not wild-type (P = 0.365), mice (Fig. 7d),” the affected sentences should read, “Notably, AP2γ−/− mice also showed alterations in cortical binocularity (Fig. 7c,d and Supplementary Table 2) and a tendency toward an increased latency of visual response (wild type = 110.0 ± 3.8 ms, AP2γ−/− = 127.2 ± 6.4 ms; t-test, P = 0.05; Supplementary Table 2). […] Indeed, monocular deprivation for 3 d caused a significant change in binocularity in adult AP2γ−/− (P = 0.01), but not wild-type (P = 0.365), mice (Fig. 7d).” The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Rash, B.G. & Grove, E.A. Area and layer patterning in the developing cerebral cortex. Curr. Opin. Neurobiol. 16, 25–34 (2006).

    Article  CAS  Google Scholar 

  2. O'Leary, D.D., Chou, S.J. & Sahara, S. Area patterning of the mammalian cortex. Neuron 56, 252–269 (2007).

    Article  CAS  Google Scholar 

  3. Molyneaux, B.J., Arlotta, P., Menezes, J.R. & Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    Article  CAS  Google Scholar 

  4. Sur, M. & Rubenstein, J.L. Patterning and plasticity of the cerebral cortex. Science 310, 805–810 (2005).

    Article  CAS  Google Scholar 

  5. Polleux, F., Dehay, C., Goffinet, A. & Kennedy, H. Pre- and post-mitotic events contribute to the progressive acquisition of area-specific connectional fate in the neocortex. Cereb. Cortex 11, 1027–1039 (2001).

    Article  CAS  Google Scholar 

  6. Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8, 438–450 (2007).

    Article  CAS  Google Scholar 

  7. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  8. Haubensak, W., Attardo, A., Denk, W. & Huttner, W.B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  Google Scholar 

  9. Miyata, T. et al. Asymmetric production of surface-dividing and non–surface dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

    Article  CAS  Google Scholar 

  10. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  Google Scholar 

  11. Wu, S.X. et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc. Natl. Acad. Sci. USA 102, 17172–17177 (2005).

    Article  CAS  Google Scholar 

  12. Martínez-Cerdeño, V., Noctor, S.C. & Kriegstein, A.R. The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb. Cortex 16, 152–161 (2006).

    Article  Google Scholar 

  13. Lukaszewicz, A. et al. The concerted modulation of proliferation and migration contributes to the specification of the cytoarchitecture and dimensions of cortical areas. Cereb. Cortex 16 (Suppl 1): i26–i34 (2006).

    Article  Google Scholar 

  14. Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J. Comp. Neurol. 479, 168–180 (2004).

    Article  CAS  Google Scholar 

  15. Zimmer, C., Tiveron, M.C., Bodmer, R. & Cremer, H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex 14, 1408–1420 (2004).

    Article  Google Scholar 

  16. Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128, 1983–1993 (2001).

    CAS  Google Scholar 

  17. Cubelos, B. et al. Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. Cereb. Cortex 18, 1758–1770 (2008).

    Article  Google Scholar 

  18. Kowalczyk, T. et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex published online, doi:10.1093/cercor/bhn260 (23 January 2009).

  19. Sessa, A., Mao, C.A., Hadjantonakis, A.K., Klein, W.H. & Broccoli, V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60, 56–69 (2008).

    Article  CAS  Google Scholar 

  20. Arnold, S.J. et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 22, 2479–2484 (2008).

    Article  CAS  Google Scholar 

  21. Pinto, L. et al. Prospective isolation of functionally distinct radial glial subtypes—lineage and transcriptome analysis. Mol. Cell Neurosci. 38, 15–42 (2008).

    Article  CAS  Google Scholar 

  22. Götz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–1044 (1998).

    Article  Google Scholar 

  23. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  Google Scholar 

  24. Haubst, N. et al. Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development. Development 131, 6131–6140 (2004).

    Article  CAS  Google Scholar 

  25. Stoykova, A., Treichel, D., Hallonet, M. & Gruss, P. Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. J. Neurosci. 20, 8042–8050 (2000).

    Article  CAS  Google Scholar 

  26. Kroll, T.T. & O'Leary, D.D. Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc. Natl. Acad. Sci. USA 102, 7374–7379 (2005).

    Article  CAS  Google Scholar 

  27. Holm, P.C. et al. Loss- and gain-of-function analyses reveal targets of Pax6 in the developing mouse telencephalon. Mol. Cell. Neurosci. 34, 99–119 (2007).

    Article  CAS  Google Scholar 

  28. Werling, U. & Schorle, H. Transcription factor gene AP-2 gamma essential for early murine development. Mol. Cell. Biol. 22, 3149–3156 (2002).

    Article  CAS  Google Scholar 

  29. Zhao, F., Lufkin, T. & Gelb, B.D. Expression of Tfap2d, the gene encoding the transcription factor Ap-2 delta, during mouse embryogenesis. Gene Expr. Patterns 3, 213–217 (2003).

    Article  CAS  Google Scholar 

  30. Chazaud, C. et al. AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mech. Dev. 54, 83–94 (1996).

    Article  CAS  Google Scholar 

  31. Iwasato, T. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731 (2000).

    Article  CAS  Google Scholar 

  32. Werling, U. & Schorle, H. Conditional inactivation of transcription factor AP-2gamma by using the Cre/loxP recombination system. Genesis 32, 127–129 (2002).

    Article  CAS  Google Scholar 

  33. Ferrere, A., Vitalis, T., Gingras, H., Gaspar, P. & Cases, O. Expression of Cux-1 and Cux-2 in the developing somatosensory cortex of normal and barrel-defective mice. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 158–165 (2006).

    Article  Google Scholar 

  34. Roy, K. et al. The Tlx gene regulates the timing of neurogenesis in the cortex. J. Neurosci. 24, 8333–8345 (2004).

    Article  CAS  Google Scholar 

  35. Gillies, K. & Price, D.J. The fates of cells in the developing cerebral cortex of normal and methylazoxymethanol acetate-lesioned mice. Eur. J. Neurosci. 5, 73–84 (1993).

    Article  CAS  Google Scholar 

  36. Gianfranceschi, L., Fiorentini, A. & Maffei, L. Behavioural visual acuity of wild type and bcl2 transgenic mouse. Vision Res. 39, 569–574 (1999).

    Article  CAS  Google Scholar 

  37. Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L. & Maffei, L. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res. 34, 709–720 (1994).

    Article  CAS  Google Scholar 

  38. Li, H., Goswami, P.C. & Domann, F.E. AP-2gamma induces p21 expression, arrests cell cycle, and inhibits the tumor growth of human carcinoma cells. Neoplasia 8, 568–577 (2006).

    Article  CAS  Google Scholar 

  39. Farkas, L.M. et al. Insulinoma-associated 1 has a panneurogenic role and promotes the generation and expansion of basal progenitors in the developing mouse neocortex. Neuron 60, 40–55 (2008).

    Article  CAS  Google Scholar 

  40. Mattar, P. et al. Basic helix-loop-helix transcription factors cooperate to specify a cortical projection neuron identity. Mol. Cell. Biol. 28, 1456–1469 (2008).

    Article  CAS  Google Scholar 

  41. Fan, G. et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132, 3345–3356 (2005).

    Article  CAS  Google Scholar 

  42. Kim, E.A. et al. Phosphorylation and transactivation of Pax6 by homeodomain-interacting protein kinase 2. J. Biol. Chem. 281, 7489–7497 (2006).

    Article  CAS  Google Scholar 

  43. Cundiff, P. et al. ERK5 MAP kinase regulates Neurogenin1 during cortical neurogenesis. PLoS One 4, e5204 (2009).

    Article  Google Scholar 

  44. Schuurmans, C. et al. Sequential phases of cortical specification involve neurogenin-dependent and -independent pathways. EMBO J. 23, 2892–2902 (2004).

    Article  CAS  Google Scholar 

  45. Cancedda, L. et al. Acceleration of visual system development by environmental enrichment. J. Neurosci. 24, 4840–4848 (2004).

    Article  CAS  Google Scholar 

  46. Spolidoro, M., Sale, A., Berardi, N. & Maffei, L. Plasticity in the adult brain: lessons from the visual system. Exp. Brain Res. 192, 335–341 (2008).

    Article  Google Scholar 

  47. Caleo, M. et al. Transient synaptic silencing of developing striate cortex has persistent effects on visual function and plasticity. J. Neurosci. 27, 4530–4540 (2007).

    Article  CAS  Google Scholar 

  48. Costa, M.R., Bucholz, O., Schroeder, T. & Gotz, M. Late origin of glia-restricted progenitors in the developing mouse cerebral cortex. Cereb. Cortex 19, 135–143 (2009).

    Article  Google Scholar 

  49. Hand, R. et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48, 45–62 (2005).

    Article  CAS  Google Scholar 

  50. Porciatti, V., Pizzorusso, T. & Maffei, L. The visual physiology of the wild-type mouse determined with pattern VEPs. Vision Res. 39, 3071–3081 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to M. Moser, S. Pfaff, C. Schuurmans and Y. Gotoh for in situ probes and to R. Jäger for providing reagents. We thank T. Öztürk, A. Steiner, A. Waiser and D. Franzen for excellent technical assistance. H.S. was supported by the Deutsche Forschungsgemeinschaft. M.G. was supported by the Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung and the Bavarian government. L.P. is supported by the Portuguese Fundaçäo para a Ciência e Tecnologia/European Social Fund.

Author information

Authors and Affiliations

Authors

Contributions

L.P. did most of the experimental work. D.D. contributed to the in vitro studies and to immunostaining in the embryonic cortex. M.-T.S. contributed to the in utero injections. J.N. contributed to the luciferase assay. M.I. and J.B. conducted the microarrays analyses. M.S.B. contributed to the beads injections. L.R., L.G., C.C. and M.C. conducted the visual functional analysis. S.N.W. and H.S. generated the AP2γ conditional knockout mice. V.T. contributed with antibodies. K.B. conducted the adult human analysis. F.G. prepared the Mash1 construct and provided the Ngn2KiMash1 mice. N.Z. conducted the embryonic human analyses. C.D. conducted the embryonic monkey analyses. M.G. supervised the project and wrote the manuscript together with L.P.

Corresponding authors

Correspondence to Luisa Pinto or Magdalena Götz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Tables 1 and 2 (PDF 7056 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, L., Drechsel, D., Schmid, MT. et al. AP2γ regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nat Neurosci 12, 1229–1237 (2009). https://doi.org/10.1038/nn.2399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing