Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coding of stimulus sequences by population responses in visual cortex

Abstract

Neuronal populations in sensory cortex represent time-changing sensory input through a spatiotemporal code. What are the rules that govern this code? We measured membrane potentials and spikes from neuronal populations in cat visual cortex (V1) using voltage-sensitive dyes and electrode arrays. We first characterized the population response to a single orientation. As response amplitude grew, the population tuning width remained constant for membrane potential responses and became progressively sharper for spike responses. We then asked how these single-orientation responses combine to code for successive orientations. We found that they combined through simple linear summation. Linearity, however, was violated after stimulus offset, when responses exhibited an unexplained persistence. As a result of linearity, the interactions between responses to successive stimuli were minimal. Our results indicate that higher cortical areas may reconstruct the stimulus sequence from V1 population responses through a simple instantaneous decoder. Therefore, spatial and temporal codes in area V1 operate largely independently.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Population responses to an oriented stimulus.
Figure 2: Properties of single-orientation responses.
Figure 3: Predicting the membrane potential responses of the population to the full stimulus sequence.
Figure 4: Predicting the spike responses of the population to the full stimulus sequence.
Figure 5: Predicting the interactions between population responses to successive orientations.
Figure 6: Unexplained persistence of population responses after stimulus offset.
Figure 7: Decoding stimulus orientation from the population responses.

Similar content being viewed by others

References

  1. Pouget, A., Dayan, P. & Zemel, R.S. Inference and computation with population codes. Annu. Rev. Neurosci. 26, 381–410 (2003).

    Article  CAS  Google Scholar 

  2. Averbeck, B.B., Latham, P.E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    Article  CAS  Google Scholar 

  3. Buonomano, D.V. & Maass, W. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113–125 (2009).

    Article  CAS  Google Scholar 

  4. Broome, B.M., Jayaraman, V. & Laurent, G. Encoding and decoding of overlapping odor sequences. Neuron 51, 467–482 (2006).

    Article  CAS  Google Scholar 

  5. Yu, B.M. et al. Mixture of trajectory models for neural decoding of goal-directed movements. J. Neurophysiol. 97, 3763–3780 (2007).

    Article  Google Scholar 

  6. Civillico, E.F. & Contreras, D. Integration of evoked responses in supragranular cortex studied with optical recordings in vivo. J. Neurophysiol. 96, 336–351 (2006).

    Article  Google Scholar 

  7. Ferster, D. & Miller, K.D. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23, 441–471 (2000).

    Article  CAS  Google Scholar 

  8. Shapley, R., Hawken, M. & Ringach, D.L. Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron 38, 689–699 (2003).

    Article  CAS  Google Scholar 

  9. Sharon, D. & Grinvald, A. Dynamics and constancy in cortical spatiotemporal patterns of orientation processing. Science 295, 512–515 (2002).

    Article  CAS  Google Scholar 

  10. Benucci, A., Frazor, R.A. & Carandini, M. Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55, 103–117 (2007).

    Article  CAS  Google Scholar 

  11. Gillespie, D.C., Lampl, I., Anderson, J.S. & Ferster, D. Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex. Nat. Neurosci. 4, 1014–1019 (2001).

    Article  CAS  Google Scholar 

  12. Shevelev, I.A., Sharaev, G.A., Lazareva, N.A., Novikova, R.V. & Tikhomirov, A.S. Dynamics of orientation tuning in the cat striate cortex neurons. Neuroscience 56, 865–876 (1993).

    Article  CAS  Google Scholar 

  13. Volgushev, M., Vidyasagar, T.R. & Pei, X. Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex. Vis. Neurosci. 12, 621–628 (1995).

    Article  CAS  Google Scholar 

  14. Ringach, D.L., Hawken, M.J. & Shapley, R. Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997).

    Article  CAS  Google Scholar 

  15. Chen, G., Dan, Y. & Li, C.Y. Stimulation of non-classical receptive field enhances orientation selectivity in the cat. J. Physiol. (Lond.) 564, 233–243 (2005).

    Article  CAS  Google Scholar 

  16. Ringach, D.L., Hawken, M.J. & Shapley, R. Dynamics of orientation tuning in macaque V1: the role of global and tuned suppression. J. Neurophysiol. 90, 342–352 (2003).

    Article  Google Scholar 

  17. Celebrini, S., Thorpe, S., Trotter, Y. & Imbert, M. Dynamics of orientation coding in area V1 of the awake primate. Vis. Neurosci. 10, 811–825 (1993).

    Article  CAS  Google Scholar 

  18. Mazer, J.A., Vinje, W.E., McDermott, J., Schiller, P.H. & Gallant, J.L. Spatial frequency and orientation tuning dynamics in area V1. Proc. Natl. Acad. Sci. USA 99, 1645–1650 (2002).

    Article  CAS  Google Scholar 

  19. Nelson, S.B. Temporal interactions in the cat visual system. I. Orientation-selective suppression in visual cortex. J. Neurosci. 11, 344–356 (1991).

    Article  CAS  Google Scholar 

  20. Müller, J.R., Metha, A.B., Krauskopf, J. & Lennie, P. Rapid adaptation in visual cortex to the structure of images. Science 285, 1405–1408 (1999).

    Article  Google Scholar 

  21. Felsen, G. et al. Dynamic modification of cortical orientation tuning mediated by recurrent connections. Neuron 36, 945–954 (2002).

    Article  CAS  Google Scholar 

  22. Dragoi, V., Sharma, J., Miller, E.K. & Sur, M. Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nat. Neurosci. 5, 883–891 (2002).

    Article  CAS  Google Scholar 

  23. Duysens, J., Orban, G.A., Cremieux, J. & Maes, H. Visual cortical correlates of visible persistence. Vision Res. 25, 171–178 (1985).

    Article  CAS  Google Scholar 

  24. Coltheart, M. Iconic memory and visible persistence. Percept. Psychophys. 27, 183–228 (1980).

    Article  CAS  Google Scholar 

  25. Goldberg, J.A., Rokni, U. & Sompolinsky, H. Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron 42, 489–500 (2004).

    Article  CAS  Google Scholar 

  26. Ben-Yishai, R., Lev Bar Or, R. & Sompolinsky, H. Theory of orientation tuning in the visual cortex. Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995).

    Article  CAS  Google Scholar 

  27. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003).

    Article  CAS  Google Scholar 

  28. Oram, M.W., Foldiak, P., Perrett, D.I. & Sengpiel, F. The 'ideal homunculus': decoding neural population signals. Trends Neurosci. 21, 259–265 (1998).

    Article  CAS  Google Scholar 

  29. Salinas, E. & Abbott, L.F. Vector reconstruction from firing rates. J. Comput. Neurosci. 1, 89–107 (1994).

    Article  CAS  Google Scholar 

  30. Seung, H.S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).

    Article  CAS  Google Scholar 

  31. Geisler, W.S. & Albrecht, D.G. Bayesian analysis of identification performance in monkey visual cortex: nonlinear mechanisms and stimulus certainty. Vision Res. 35, 2723–2730 (1995).

    Article  CAS  Google Scholar 

  32. Normann, R.A., Maynard, E.M., Rousche, P.J. & Warren, D.J. A neural interface for a cortical vision prosthesis. Vision Res. 39, 2577–2587 (1999).

    Article  CAS  Google Scholar 

  33. Grinvald, A. & Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004).

    Article  CAS  Google Scholar 

  34. Petersen, C.C., Grinvald, A. & Sakmann, B. Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J. Neurosci. 23, 1298–1309 (2003).

    Article  CAS  Google Scholar 

  35. Ringach, D.L. & Malone, B.J. The operating point of the cortex: neurons as large deviation detectors. J. Neurosci. 27, 7673–7683 (2007).

    Article  CAS  Google Scholar 

  36. Hübener, M. & Bonhoeffer, T. Optical imaging of functional architecture in cat primary visual cortex. in The Cat Primary Visual Cortex (eds Payne, B.R. & Peters, A.) 1–137 (Academic Press, New York, 2002).

  37. Dean, A.F. & Tolhurst, D.J. Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex. Exp. Brain Res. 62, 143–151 (1986).

    Article  CAS  Google Scholar 

  38. Carandini, M. & Ferster, D. Membrane potential and firing rate in cat primary visual cortex. J. Neurosci. 20, 470–484 (2000).

    Article  CAS  Google Scholar 

  39. Azouz, R. & Gray, C.M. Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc. Natl. Acad. Sci. USA 97, 8110–8115 (2000).

    Article  CAS  Google Scholar 

  40. Chichilnisky, E.J. A simple white noise analysis of neuronal light responses. Network 12, 199–213 (2001).

    Article  CAS  Google Scholar 

  41. Xing, D., Shapley, R.M., Hawken, M.J. & Ringach, D.L. Effect of stimulus size on the dynamics of orientation selectivity in macaque V1. J. Neurophysiol. 94, 799–812 (2005).

    Article  Google Scholar 

  42. Schummers, J. et al. Dynamics of orientation tuning in cat V1 neurons depend on the location within layers and orientation maps. Front. Neurosci. 1, 145–159 (2007).

    Article  Google Scholar 

  43. Carandini, M. et al. Do we know what the early visual system does? J. Neurosci. 25, 10577–10597 (2005).

    Article  CAS  Google Scholar 

  44. Touryan, J., Lau, B. & Dan, Y. Isolation of relevant visual features from random stimuli for cortical complex cells. J. Neurosci. 22, 10811–10818 (2002).

    Article  CAS  Google Scholar 

  45. Tolhurst, D.J., Walker, N.S., Thompson, I.D. & Dean, A.F. Nonlinearities of temporal summation in neurones in area 17 of the cat. Exp. Brain Res. 38, 431–435 (1980).

    Article  CAS  Google Scholar 

  46. McCormick, D.A. et al. Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb. Cortex 13, 1219–1231 (2003).

    Article  Google Scholar 

  47. Carandini, M. & Ringach, D.L. Predictions of a recurrent model of orientation selectivity. Vision Res. 37, 3061–3071 (1997).

    Article  CAS  Google Scholar 

  48. Kovács, G., Vogels, R. & Orban, G.A. Cortical correlate of pattern backward masking. Proc. Natl. Acad. Sci. USA 92, 5587–5591 (1995).

    Article  Google Scholar 

  49. Rolls, E.T. & Tovee, M.J. Processing speed in the cerebral cortex and the neurophysiology of visual masking. Proc. Biol. Sci. 257, 9–15 (1994).

    Article  CAS  Google Scholar 

  50. Keysers, C., Xiao, D.K., Földiák, P. & Perrett, D.I. Out of sight but not out of mind: the neurophysiology of iconic memory in the superior temporal sulcus. Cogn. Neuropsychol. 22, 316–332 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Nauhaus, R.A. Frazor, L. Busse and S. Katzner for help with data acquisition. We thank W.T. Newsome, W.S. Geisler and G. Felsen for helpful discussions. This work was supported by a Scholar Award from the McKnight Endowment Fund for Neuroscience (M.C.) and by US National Institutes of Health grants EY017396 (M.C.) and EY018322 (D.L.R.). M.C. holds the GlaxoSmithKline/Fight for Sight Chair in Visual Neuroscience.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and M.C. carried out the experiments, A.B. analyzed the data, and all of the authors contributed to the intellectual development of the project and to the writing of the manuscript.

Corresponding author

Correspondence to Andrea Benucci.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 260 kb)

Supplementary Video 1

Decoding the population responses to recover the stimulus orientation. (AVI 6151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benucci, A., Ringach, D. & Carandini, M. Coding of stimulus sequences by population responses in visual cortex. Nat Neurosci 12, 1317–1324 (2009). https://doi.org/10.1038/nn.2398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing