Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Presynaptic CaV2 calcium channel traffic requires CALF-1 and the α2δ subunit UNC-36


Presynaptic voltage-gated calcium channels provide calcium for synaptic vesicle exocytosis. We show here that a green fluorescent protein–tagged α1 subunit of the Caenorhabditis elegans CaV2 channel, UNC-2, is localized to presynaptic active zones of sensory and motor neurons. Synaptic localization of CaV2 requires the α2δ subunit UNC-36 and CALF-1 (Calcium Channel Localization Factor-1), a neuronal transmembrane protein that localizes to the endoplasmic reticulum. In calf-1 mutants, UNC-2 is retained in the endoplasmic reticulum, but other active-zone components and synaptic vesicles are delivered to synapses. Acute induction of calf-1 mobilizes preexisting UNC-2 for delivery to synapses, consistent with a direct trafficking role. The α2δ subunit UNC-36 is likewise required for exit of UNC-2 from endoplasmic reticulum but has additional functions. Genetic and cell biological interactions suggest that CALF-1 couples intracellular traffic to functional maturation of CaV2 presynaptic calcium channels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: GFP-tagged UNC-2 localizes to presynaptic puncta in sensory neurons and motor neurons.
Figure 2: Presynaptic GFPUNC-2 puncta are lost in calf-1(ky867) mutants.
Figure 3: calf-1 encodes a type I transmembrane protein.
Figure 4: CALF-1 acts cell-autonomously in neurons and localizes to endoplasmic reticulum.
Figure 5: Structure-function analysis of CALF-1.
Figure 6: CALF-1 and UNC-36 have related trafficking functions.
Figure 7: Acute CALF-1 expression transports UNC-2 from the cell body to the synapse.


  1. 1

    Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Arikkath, J. & Campbell, K.P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13, 298–307 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Bidaud, I., Mezghrani, A., Swayne, L.A., Monteil, A. & Lory, P. Voltage-gated calcium channels in genetic diseases. Biochim. Biophys. Acta 1763, 1169–1174 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Jeziorski, M.C., Greenberg, R.M. & Anderson, P.A. The molecular biology of invertebrate voltage-gated Ca2+ channels. J. Exp. Biol. 203, 841–856 (2000).

    CAS  PubMed  Google Scholar 

  5. 5

    Smith, L.A. et al. A Drosophila calcium channel α1 subunit gene maps to a genetic locus associated with behavioral and visual defects. J. Neurosci. 16, 7868–7879 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Brooks, I.M., Felling, R., Kawasaki, F. & Ordway, R.W. Genetic analysis of a synaptic calcium channel in Drosophila: intragenic modifiers of a temperature-sensitive paralytic mutant of cacophony. Genetics 164, 163–171 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Kawasaki, F., Zou, B., Xu, X. & Ordway, R.W. Active zone localization of presynaptic calcium channels encoded by the cacophony locus of Drosophila. J. Neurosci. 24, 282–285 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Schafer, W.R. & Kenyon, C.J. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375, 73–78 (1995).

    CAS  Article  Google Scholar 

  9. 9

    Richmond, J.E., Weimer, R.M. & Jorgensen, E.M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–341 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Mathews, E.A. et al. Critical residues of the Caenorhabditis elegans unc-2 voltage-gated calcium channel that affect behavioral and physiological properties. J. Neurosci. 23, 6537–6545 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Canti, C. et al. The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of α2δ subunits is key to trafficking voltage-gated Ca2+ channels. Proc. Natl. Acad. Sci. USA 102, 11230–11235 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Dickman, D.K., Kurshan, P.T. & Schwarz, T.L. Mutations in a Drosophila α2δ voltage-gated calcium channel subunit reveal a crucial synaptic function. J. Neurosci. 28, 31–38 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Ly, C.V., Yao, C.-K., Verstreken, P., Ohyama, T. & Bellen, H.J. straightjacket is required for the synaptic stabilization of cacophony, a voltage-gated calcium channel α1 subunit. J. Cell Biol. 181, 157–170 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Bichet, D. et al. The I–II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit. Neuron 25, 177–190 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Viard, P. et al. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat. Neurosci. 7, 939–946 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Long, A.A. et al. Presynaptic calcium channel localization and calcium-dependent synaptic vesicle exocytosis regulated by the Fuseless protein. J. Neurosci. 28, 3668–3682 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Nishimune, H., Sanes, J.R. & Carlson, S.S. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432, 580–587 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Butz, S., Okamoto, M. & Sudhof, T.C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 773–782 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Lai, M. et al. A tctex1-Ca2+ channel complex for selective surface expression of Ca2+ channels in neurons. Nat. Neurosci. 8, 435–442 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Patel, M.R. et al. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat. Neurosci. 9, 1488–1498 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Crump, J.G., Zhen, M., Jin, Y. & Bargmann, C.I. The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron 29, 115–129 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Zhen, M., Huang, X., Bamber, B. & Jin, Y. Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain. Neuron 26, 331–343 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Hallam, S.J., Goncharov, A., McEwen, J., Baran, R. & Jin, Y. SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nat. Neurosci. 5, 1137–1146 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401, 371–375 (1999).

    CAS  PubMed  Google Scholar 

  26. 26

    Hall, D.H. & Hedgecock, E.M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837–847 (1991).

    CAS  Article  Google Scholar 

  27. 27

    Frokjaer-Jensen, C. et al. Effects of voltage-gated calcium channel subunit genes on calcium influx in cultured C. elegans mechanosensory neurons. J. Neurobiol. 66, 1125–1139 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Bauer Huang, S.L. et al. Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans. Neural Dev 2, 24 (2007).

    Article  Google Scholar 

  29. 29

    Rolls, M.M., Hall, D.H., Victor, M., Stelzer, E.H. & Rapoport, T.A. Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neurons. Mol. Biol. Cell 13, 1778–1791 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Chalasani, S.H. et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450, 63–70 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Zerangue, N., Schwappach, B., Jan, Y.N. & Jan, L.Y. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22, 537–548 (1999).

    CAS  Article  Google Scholar 

  32. 32

    Schwappach, B., Zerangue, N., Jan, Y.N. & Jan, L.Y. Molecular basis for K(ATP) assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron 26, 155–167 (2000).

    CAS  Article  Google Scholar 

  33. 33

    Troemel, E.R., Sagasti, A. & Bargmann, C.I. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99, 387–398 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    CAS  Article  Google Scholar 

  35. 35

    Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat. Protoc. 2, 2024–2032 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Yeh, E. et al. A putative cation channel, NCA-1, and a novel protein, UNC-80, transmit neuronal activity in C. elegans. PLoS Biol. 6, e55 (2008).

    Article  Google Scholar 

  37. 37

    Grunwald, M.E., Mellem, J.E., Strutz, N., Maricq, A.V. & Kaplan, J.M. Clathrin-mediated endocytosis is required for compensatory regulation of GLR-1 glutamate receptors after activity blockade. Proc. Natl. Acad. Sci. USA 101, 3190–3195 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Schwappach, B. An overview of trafficking and assembly of neurotransmitter receptors and ion channels. Mol. Membr. Biol. 25, 270–278 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Hendrich, J. et al. Pharmacological disruption of calcium channel trafficking by the α2δ ligand gabapentin. Proc. Natl. Acad. Sci. USA 105, 3628–3633 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Herrmann, J.M., Malkus, P. & Schekman, R. Out of the ER–outfitters, escorts and guides. Trends Cell Biol. 9, 5–7 (1999).

    CAS  Article  Google Scholar 

  41. 41

    Fromme, J.C., Orci, L. & Schekman, R. Coordination of COPII vesicle trafficking by Sec23. Trends Cell Biol. 18, 330–336 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Kota, J. & Ljungdahl, P.O. Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. J. Cell Biol. 168, 79–88 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Michelsen, K., Yuan, H. & Schwappach, B. Hide and run. Arginine-based endoplasmic-reticulum-sorting motifs in the assembly of heteromultimeric membrane proteins. EMBO Rep. 6, 717–722 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Schutze, M.P., Peterson, P.A. & Jackson, M.R. An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J. 13, 1696–1705 (1994).

    CAS  Article  Google Scholar 

  45. 45

    Anderson, P. Mutagenesis. Methods Cell Biol. 48, 31–58 (1995).

    CAS  Article  Google Scholar 

  46. 46

    Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H. & Plasterk, R.H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28, 160–164 (2001).

    CAS  Article  Google Scholar 

  47. 47

    Tallini, Y.N. et al. Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc. Natl. Acad. Sci. USA 103, 4753–4758 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Chen, C.C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell 17, 1286–1297 (2006).

    CAS  Article  Google Scholar 

Download references


We thank S. Chalasani, T. Maniar and P. McGrath for their insights and advice, A. Bendesky, E. Feinberg, G. Lee, B. Lesch, M. Tsunozaki and L. Winzenread for comments on the manuscript, L. Looger for G-CaMP2.2b, K. Shen for mCherryrab-3, and the Caenorhabditis Genetic Center (CGC) and the National Bioresource Project for strains. This work was supported by the Howard Hughes Medical Institute (C.I.B.), and Y.S. was supported by the Nakajima Foundation. We dedicate this paper to Masanori Obayashi.

Author information




Y.S. and C.I.B. designed the project, and Y.S. conducted the experiments. Y.S. and C.I.B. wrote the paper.

Corresponding author

Correspondence to Cornelia I Bargmann.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 1427 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saheki, Y., Bargmann, C. Presynaptic CaV2 calcium channel traffic requires CALF-1 and the α2δ subunit UNC-36. Nat Neurosci 12, 1257–1265 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing