Nicotine activates the chemosensory cation channel TRPA1

Abstract

Topical application of nicotine, as used in nicotine replacement therapies, causes irritation of the mucosa and skin. This reaction has been attributed to activation of nicotinic acetylcholine receptors (nAChRs) in chemosensory neurons. In contrast with this view, we found that the chemosensory cation channel transient receptor potential A1 (TRPA1) is crucially involved in nicotine-induced irritation. We found that micromolar concentrations of nicotine activated heterologously expressed mouse and human TRPA1. Nicotine acted in a membrane-delimited manner, stabilizing the open state(s) and destabilizing the closed state(s) of the channel. In the presence of the general nAChR blocker hexamethonium, nociceptive neurons showed nicotine-induced responses that were strongly reduced in TRPA1-deficient mice. Finally, TRPA1 mediated the mouse airway constriction reflex to nasal instillation of nicotine. The identification of TRPA1 as a nicotine target suggests that existing models of nicotine-induced irritation should be revised and may facilitate the development of smoking cessation therapies with less adverse effects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Activation of TRPA1 by nicotine.
Figure 2: Nicotine activates TRPA1 in cell-free inside-out patches.
Figure 3: Cross desensitization of TRPA1 activation by nicotine and mustard oil.
Figure 4: TRPA1 activation is prevented by the nAChR inhibitor mecamylamine, but is unaffected by hexamethonium.
Figure 5: Nicotine activates TRPA1 in mouse trigeminal ganglion neurons.
Figure 6: TRPA1 mediates the airway constriction reflex triggered by nasal instillation of nicotine and mustard oil.
Figure 7: Menthol inhibits nicotine-induced activation of TRPA1.

References

  1. 1

    Hatsukami, D.K., Stead, L.F. & Gupta, P.C. Tobacco addiction. Lancet 371, 2027–2038 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Thuerauf, N. et al. The influence of mecamylamine on trigeminal and olfactory chemoreception of nicotine. Neuropsychopharmacology 31, 450–461 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Stead, L.F., Perera, R., Bullen, C., Mant, D. & Lancaster, T. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst. Rev. CD000146 (2008).

  4. 4

    Nides, M. Update on pharmacologic options for smoking cessation treatment. Am. J. Med. 121, S20–S31 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Hajek, P. et al. Randomized comparative trial of nicotine polacrilex, a transdermal patch, nasal spray and an inhaler. Arch. Intern. Med. 159, 2033–2038 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Dussor, G.O. et al. Potentiation of evoked calcitonin gene–related peptide release from oral mucosa: a potential basis for the pro-inflammatory effects of nicotine. Eur. J. Neurosci. 18, 2515–2526 (2003).

    Article  Google Scholar 

  7. 7

    Simons, C.T., Sudo, S., Sudo, M. & Carstens, E. Mecamylamine reduces nicotine cross-desensitization of trigeminal caudalis neuronal responses to oral chemical irritation. Brain Res. 991, 249–253 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Lee, L.Y. & Gu, Q. Cough sensors. IV. Nicotinic membrane receptors on cough sensors. Handb. Exp. Pharmacol. 187, 77–98 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Talavera, K., Nilius, B. & Voets, T. Neuronal TRP channels: thermometers, pathfinders and lifesavers. Trends Neurosci. 31, 287–295 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Damann, N., Voets, T. & Nilius, B. TRPs in our senses. Curr. Biol. 18, R880–R889 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Liu, L. et al. Nicotine inhibits voltage-dependent sodium channels and sensitizes vanilloid receptors. J. Neurophysiol. 91, 1482–1491 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Fucile, S., Sucapane, A. & Eusebi, F. Ca2+ permeability of nicotinic acetylcholine receptors from rat dorsal root ganglion neurones. J. Physiol. (Lond.) 565, 219–228 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Bessac, B.F. & Jordt, S.E. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda) 23, 360–370 (2008).

    CAS  Google Scholar 

  15. 15

    Story, G.M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Karashima, Y. et al. TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl. Acad. Sci. USA 106, 1273–1278 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Andrè, E. et al. Cigarette smoke–induced neurogenic inflammation is mediated by alpha,beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J. Clin. Invest. 118, 2574–2582 (2008).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Bautista, D.M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Kwan, K.Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006).

    CAS  Article  Google Scholar 

  22. 22

    MacPherson, L.J. et al. More than cool: promiscuous relationships of menthol and other sensory compounds. Mol. Cell. Neurosci. 32, 335–343 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Karashima, Y. et al. Bimodal action of menthol on the transient receptor potential channel TRPA1. J. Neurosci. 27, 9874–9884 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Xiao, B. et al. Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J. Neurosci. 28, 9640–9651 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Meseguer, V. et al. Transient receptor potential channels in sensory neurons are targets of the antimycotic agent clotrimazole. J. Neurosci. 28, 576–586 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Fajardo, O., Meseguer, V., Belmonte, C. & Viana, F. TRPA1 channels: novel targets of 1,4-dihydropyridines. Channels (Austin) 2, 429–438 (2008).

    Article  Google Scholar 

  27. 27

    Hinman, A., Chuang, H.H., Bautista, D.M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl. Acad. Sci. USA 103, 19564–19568 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Macpherson, L.J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Zurborg, S., Yurgionas, B., Jira, J.A., Caspani, O. & Heppenstall, P.A. Direct activation of the ion channel TRPA1 by Ca2+. Nat. Neurosci. 10, 277–279 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Doerner, J.F., Gisselmann, G., Hatt, H. & Wetzel, C.H. Transient receptor potential channel A1 is directly gated by calcium ions. J. Biol. Chem. 282, 13180–13189 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Carstens, E., Kuenzler, N. & Handwerker, H.O. Activation of neurons in rat trigeminal subnucleus caudalis by different irritant chemicals applied to oral or ocular mucosa. J. Neurophysiol. 80, 465–492 (1998).

    CAS  Article  Google Scholar 

  32. 32

    Simons, C.T., Boucher, Y., Carstens, M.I. & Carstens, E. Nicotine suppression of gustatory responses of neurons in the nucleus of the solitary tract. J. Neurophysiol. 96, 1877–1886 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Papke, R.L., Sanberg, P.R. & Shytle, R.D. Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes. J. Pharmacol. Exp. Ther. 297, 646–656 (2001).

    CAS  PubMed  Google Scholar 

  34. 34

    Xu, H., Blair, N.T. & Clapham, D.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 25, 8924–8937 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Liu, L. & Simon, S.A. Capsaicin and nicotine both activate a subset of rat trigeminal ganglion neurons. Am. J. Physiol. 270, C1807–C1814 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Haberberger, R.V. et al. Nicotinic acetylcholine receptor subtypes in nociceptive dorsal root ganglion neurons of the adult rat. Auton. Neurosci. 113, 32–42 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Widdicombe, J. Reflexes from the lungs and airways: historical perspective. J. Appl. Physiol. 101, 628–634 (2006).

    Article  Google Scholar 

  38. 38

    Vanoirbeek, J.A. et al. Respiratory response to toluene diisocyanate depends on prior frequency and concentration of dermal sensitization in mice. Toxicol. Sci. 80, 310–321 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Kreslake, J.M., Wayne, G.F. & Connolly, G.N. The menthol smoker: tobacco industry research on consumer sensory perception of menthol cigarettes and its role in smoking behavior. Nicotine Tob. Res. 10, 705–715 (2008).

    Article  Google Scholar 

  40. 40

    Dessirier, J.M., O'Mahony, M. & Carstens, E. Oral irritant properties of menthol: sensitizing and desensitizing effects of repeated application and cross-desensitization to nicotine. Physiol. Behav. 73, 25–36 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Zanotto, K.L., Merrill, A.W., Carstens, M.I. & Carstens, E. Neurons in superficial trigeminal subnucleus caudalis responsive to oral cooling, menthol and other irritant stimuli. J. Neurophysiol. 97, 966–978 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Chung, M.K., Lee, H., Mizuno, A., Suzuki, M. & Caterina, M.J. 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J. Neurosci. 24, 5177–5182 (2004).

    CAS  Article  Google Scholar 

  43. 43

    Dhar, P. Measuring tobacco smoke exposure: quantifying nicotine/cotinine concentration in biological samples by colorimetry, chromatography and immunoassay methods. J. Pharm. Biomed. Anal. 35, 155–168 (2004).

    CAS  Article  Google Scholar 

  44. 44

    Carstens, E., Albin, K.C., Simons, C.T. & Carstens, M.I. Time course of self-desensitization of oral irritation by nicotine and capsaicin. Chem. Senses 32, 811–816 (2007).

    CAS  Article  Google Scholar 

  45. 45

    Togias, A. Mechanisms of nose-lung interaction. Allergy 54 Suppl 57: 94–105 (1999).

    Article  Google Scholar 

  46. 46

    Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Rask, L. et al. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42, 93–113 (2000).

    CAS  Article  Google Scholar 

  48. 48

    Baldwin, I. & Ohnmeiss, T. Alkaloidal responses to damage in Nicotiana native to North America. J. Chem. Ecol. 19, 1143–1153 (1993).

    CAS  Article  Google Scholar 

  49. 49

    Talavera, K., Janssens, A., Klugbauer, N., Droogmans, G. & Nilius, B. Extracellular Ca2+ modulates the effects of protons on gating and conduction properties of the T-type Ca2+ channel α1G (CaV3.1). J. Gen. Physiol. 121, 511–528 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Southam, D.S., Dolovich, M., O'Byrne, P.M. & Inman, M.D. Distribution of intranasal instillations in mice: effects of volume, time, body position and anesthesia. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L833–L839 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to K.Y. Kwan for providing us with the Trpa1 knockout mice, M.R. Sepúlveda for helpful discussions, and V. De Vooght and P. Hoet for help in some plethysmography experiments. The expert technical assistance of J. Prenen is greatly acknowledged. The mTRPA1 CHO cell line was kindly provided by A. Patapoutian. K.T. and J.A.J.V. were supported by a postdoctoral mandate from KU Leuven and are currently postdoctoral fellows of the Research Foundation–Flanders (Fonds voor Wetenschappelijk Onderzoek, FWO). M.G. and W.E. are doctoral FWO fellows. V.M.M was supported by Spanish CONSOLIDER-INGENIO 2010 CSD2007-00023. This work was supported by grants from Inter-university Attraction Poles Programme (Belgian Science Policy, P6/28), FWO (G.0172.03 and G.0565.07), the Research Council of the KU Leuven (GOA 2004/07) and the Flemish Government (Excellentiefinanciering, EF/95/010).

Author information

Affiliations

Authors

Contributions

K.T. carried out patch-clamp and Ca2+-imaging recordings, plethysmography experiments, analyzed the data, wrote the paper and supervised the project. M.G. and Y.K. performed patch-clamp and Ca2+-imaging recordings. V.M.M. carried out patch-clamp and Ca2+-imaging recordings in neurons. J.A.J.V. performed plethysmography experiments. N.D. carried out Ca2+-imaging recordings in neurons and edited the paper. W.E. performed Ca2+-imaging and mouse experiments and edited the paper. M.B. carried out mouse genotyping. A.J. performed the molecular biology work. R.V. supervised mouse genotyping and edited the paper. F.V. edited the paper and supervised the project. B. Nemery edited the paper and supervised the plethysmography experiments. B. Nilius edited the paper and supervised the project. T.V. analyzed the data, wrote the paper and supervised the project.

Corresponding author

Correspondence to Karel Talavera.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 3128 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Talavera, K., Gees, M., Karashima, Y. et al. Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci 12, 1293–1299 (2009). https://doi.org/10.1038/nn.2379

Download citation

Further reading